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Executive Summary

This deliverable describes the manipulation concept for the CENTAURO system. As the CEN-
TAURO project is an active research project, the content in this deliverable will most likely be
subject to change. Nevertheless, this report is necessary to lay out the further path of develop-
ment and research which will be conducted in Work package 6 of the CENTAURO project. We
propose methods for object and workspace perception which will enable the CENTAURO robot
to detect and recognize objects in its vicinity that are relevant to the envisioned manipulation
tasks and to estimate their pose. The 3D structure of the manipulation work space will be mod-
eled from the robot sensors. Using this representation, we will build a system for collision aware
motion generation based on the idea of dynamic potential fields. We will then use this module
to assist the operator during telemanipulation by generating meaningful force feedback in the
presence of obstacles to guide him around obstacles. We will develop autonomous grasp and
motion planning for the CENTAURO robot to reduce the cognitive workload for the operator by
executing simple manipulation tasks autonomously under the supervision of the operators. For
motion planning, we will extract motion primitives from recorded demonstrations of manipu-
lation tasks performed by the human operator. These motion primitives will be adapted to the
current situation and autonomously executed. Furthermore, we will chain motion primitives to
sequences to solve simple single-handed and two-handed manipulation tasks, which are similar,
but not necessarily identical to the observed ones. This data-driven approach of motion gener-
ation based on previous observations will result in human-like behavior of the robot which will
reduce the operator workload during supervision of the execution of motions and respect task
constraints. Similarly, we are going to record grasps on objects demonstrated by the operator
and store them in a database of feasible grasps. These grasps can then be utilized if the same
objects are perceived again.
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1 Introduction
This deliverable reports on the conceptual design for the manipulation in the CENTAURO
project as specified in Grant Agreement [60]. This deliverable and the corresponding deliv-
erables in the other work packages constitute the specification for how to design the manipu-
lation system and its components. Proper integration requires that the interfaces between the
work packages and modules are identified and agreed upon amongst the project partners. As-
sumptions made about the performance of certain parts of the system made in other parts of the
system much be matched.

The objective of this deliverable is to summarize the concept for single- and dual-arm object
manipulation with the CENTAURO robot. It belongs to Work Package 6 Manipulation (WP6).
The relationship of WP6 to the other work packages within the CENTAURO Project is dis-
played in Figure 1. Contributions to this deliverable and future work, come primarily from the
CENTAURO partners UBO, LIU, IIT, and SSSA. This manipulation concept is a the starting
point for the research and development within WP6.

This work package will focus on the development of autonomous single- and dual-arm
manipulation capabilities of the CENTAURO platform to support the human operator during
manipulation. It complements the teleoperated interaction of the robot with its environment
during complex and challenging tasks, which will be realized using the telepresence station
developed in Work package 3.

To assist the operator, WP6 will develop means to avoid collisions during teleoperation.
To this end, the Momaro robot will monitor its environment with 3D sensors and provide the
exoskeleton with information about the distance to obstacles in the vicinity of the robot. These

Figure 1: CENTAURO PERT Chart: Dependencies and work flow between Work package 6
and the other work packages within the CENTAURO project. From [60].
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information can then be used to render forces onto the exoskeleton to give the operator haptic
hints about possible collisions. These hints can also be visually displayed to the operators and
sonified.

The autonomous manipulation functionality developed in WP6 aims to relieve the operator
from repetitive and tedious tasks like picking and placing objects. To identify objects which
can be grasped and to spot obstacles in the vicinity of the CENTAURO robot a detailed ob-
ject and workspace perception is necessary. The operator should be able to select objects to
pick up and the desired location for their placement. The components developed in this work
package will plan the necessary collision-free motions and execute them under the supervision
of the operator. Planning of autonomous motions should be fast to avoid waiting time for the
operators. To achieve this, we will create a knowledge base of solutions for manipulation tasks
by employing a data driven-approach that learns from demonstrations recorded during teleop-
eration of the robot. A big advantage of the CENTAURO system is its capability to generate
the necessary training samples for motions during operation with the telepresence system. The
learned motion primitives will be adapted and extended to comparable situations. We will also
integrate state-of-the art methods for grasp sampling and motion planning based on traditional
sampling and trajectory optimization techniques, as a fall back if no correspondence to a motion
primitive can be established.

Work package 6 is tightly coupled to Work package 5 – Navigation – as can be seen in
Figure 1. This is necessary to extend the reachable manipulation workspace of the robot. If
objects, which are outside the current manipulator workspace, should be manipulated, the robot
needs to reposition itself with respect to the object. This can be done either teleoperated or au-
tonomously using the functionality developed in WP5. Repositioning might also be considered
if no feasible grasps can be found for an object. Furthermore, it might be necessary to adjust
the height of the robot by extending or retracting the legs to manipulate objects positioned at
different heights. In addition, if heavy objects need to be lifted, a stable stance is required to
ensure stability during manipulation.

The objectives of this work package are listed below and the conceptual approach to solve them
is presented in Section 4:

• Develop robot perception for bottom-up scene segmentation into objects, for learning 3D
models of specific objects, for detecting them and estimating their pose.

• Establish workspace perception for collision-aware motion control.

• Integrate dynamic whole-body motion control into collision-avoiding robot control.

• Implement grasp and motion planning for autonomous single-arm and bimanual object
pick and place.

• Develop grasp learning from human demonstrations through telemanipulation.

• Finally, implement autonomous execution of either grasps or motion plans on operator
request.

1.1 Inputs
As can be seen in Figure 6, the tasks of Work package 6 are tightly coupled to many tasks within
other work packages. Their dependency is described in more detail in Section 4 and Section 5.
The inputs needed in this work package are listed in the Table 1. In addition, we require the
specification for the interfaces to other modules. A close interaction with WP7 is necessary.
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What When From Whom
Existing robot model similar to CENTAURO M6 UBO
Model of the CENTAURO robot M10 IIT
Sample data from an existing telemanipulation input device M6 UBO
Definition of the tasks the system should be able to fulfill M6 LIU
Data of the upper body exoskeleton M17 SSSA
Access to the simulation environment M10 RWTH
Detailed local 3D model from local data M12 KTH
Detailed local 3D model from Centeral World Model M18 KTH

Table 1: The inputs to the manipulation work package.

1.2 Consumers
The users of the results are listed in Table 2 below. Here we focus on consumers external to this
work package.

What When To Whom
Collision-avoidance information M17 SSSA
Grasp hints and motion proposals for integration into the con-
trol interface

M17, M27 SSSA

Motion and Grasp planning module M16, M34 RWTH
Software components for integration continuously PGX

Table 2: The external consumers of results from the manipulation work package.
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2 Related Work
Telemanipulation systems have been developed for applications that are unaccessible or haz-
ardous for humans such as minimally invasive surgery [3, 23], explosive ordnance disposal [40],
and undersea [87] or space applications [56]. Only few research focuses on intuitive dexter-
ous telemanipulation with human-like hands, since dexterous hands and haptic feedback at the
hands are delicate to implement. The Japanese telexistence robot Telesar V [15] has an anthro-
pomorphic upper body with dexterous five-finger hands. The setup provides auditory, visual,
haptic, and thermal feedback to the operator. The teleoperated robot demonstrates several skills
such as pouring the content of one cup into another, stacking cubes, and Japanese calligraphy.
The German Aerospace Centre (DLR) developed telepresence in the dual-arm mobile manip-
ulation robot Rollin’ Justin [35]. The robot was controlled to handle a cable connector via a
bimanual haptic device that is also built from light-weight arms and specialized control devices
with haptic feedback for the hands. The modular prosthetic limb (MPL) system [19] is equipped
with two human-like arms and five-finger hands. The fingers contain rich sensory equipment to
measure force, vibration, fine point contact, and temperature. Hand and body motion of the op-
erator is recorded using data gloves and orientation sensors at wrist and elbow. The operator is
provided with feedback in the hands through force-feedback data gloves and vibrotacticle feed-
back devices for the fingers. In a simplified setup without kinesthetic feedback in the fingers,
the robot could be controlled to manipulate bind rails and to handle clothes pegs. In previous
work, we combined 3D visualization and tracking of operator head and hand motions to an
intuitive interface for bimanual teleoperation [61]. 3D point clouds acquired from the robot
were visualized together with a 3D robot model and camera images using a tracked 3D head-
mounted display. 6D magnetic trackers capture the operator hand motions which were mapped
to the grippers of our two-armed robot Momaro. The system checked for self-collisions and
displayed the links which were nearly in collision color-coded to the operator. Furthermore, the
system stopped motions which would lead to self-collisions. With this setup, we were able to
successfully solve all manipulation tasks encountered during the DARPA Robotics Challenge
Finals [36]. Additionally, we demonstrated in lab experiments the ability of the system to suc-
cessfully connect two flexible hoses. In contrast, the CENTAURO system will be able to provide
haptic feedback to the operator and therefore allow more fine grained control for manipulation.

Many groups are working on enabling robots to learn motions from human demonstra-
tions [50, 64, 44, 41]. Often, motions are represented using the well known framework of
dynamic movement primitives proposed by Ijspeert et al. [37]. This formalism allows to rep-
resent arbitrary demonstrated movements with a set of differential equations. The shape of the
represented trajectory can be modified by adding a perturbing force or changing the desired
goal, while the trajectory is still stable and its convergence to the goal is guaranteed. Park et
al. [54] extended the existing framework of dynamic movement primitives to incorporate obsta-
cle avoidance in movement reproduction of task space trajectories for a 7 DoF robot arm. They
used dynamic potential fields around obstacles which exert a repelling force onto the end ef-
fector and guide it around obstacles. The resulting trajectories were still stable and reached the
desired goal positions. The used dynamic potential field varies its magnitude based on the angle
between obstacle and end effector and the velocity of the end effector, which results in smooth
trajectory. Reinhart et al. [59] presented a modular architecture for bi-manual skill acquisition
from kinesthetic teaching for the humanoid robot iCub. They were able to learn skill specific
constraints which arise using two hands on one object due to the closed kinematic chain and
demonstrated the generation and execution of different learned skills like paddling and weight
lifting. A simple state machine was used to sequence the individually extracted motion primi-
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tives to a meaningful motion sequence. Gräve and Behnke presented an integrated approach to
identify and recognize human actions and reproduce them in previously unseen situations [20].
For this purpose, they chose manipulation tasks in a table top setting and recorded human mo-
tions using a camera based motion tracking system. They proposed a set of task space features
to construct probabilistic models of action classes. Their combined segmentation and classifi-
cation algorithm was able to reliably locate transitions between actions but required a training
set of pre-segmented actions. Later work of Gräve and Behnke combined learning from human
demonstrations with reinforcement learning for sequential tasks [21] and task hierarchies [22].

The premise of telemanipulation systems is to utilize the cognitive capabilities of a human
operator to solve dexterous manipulation tasks such as object pick-and-place, opening a door,
or tool-use. However, this approach also leaves significant load to the operator. Implement-
ing the required cognitive capabilities in autonomous systems in general is an open research
topic. Many approaches to grasp and motion planning in unstructured environments assume
that the geometry of objects is known and identify a set of stable grasps on objects in an offline
phase [47, 8, 52]. Stability is often measured by criteria of form closure [42] or in the grasp
wrench space [39]. To grasp the objects in the actual scene, the grasp set is pruned by identi-
fying those grasps that are reachable under kinematic and free-space constraints. In [52], UBO
developed mobile bin picking with an anthropomorphic service robot. Objects are perceived
as compounds of geometric shape primitives, and grasps are sampled on the shape primitives
and pruned in a multi-stage process. Hsiao et al. [34] proposed a reactive approach to grasping
that plans grasps at raw partial 3D measurements of objects, evaluating the resulting grasps for
reachability by time-costly motion planning. In own work at UBO [78], this approach has been
extended to provide grasps and reaching motions very fast in situations, where parametric arm
motion primitives can be used instead of costly planning of reaching motions. Goldfeder et
al. [18] propose to store grasps on specific 3D object geometries in a database and to retrieve
them for partial scans of the objects. Some approaches have been proposed to bimanual grasp
and motion planning, mainly in the field of humanoid robots [85, 49]. Vahrenkamp et al. [85]
find grasp candidates for each arm using the medial axis transform on the object geometry.
They score bimanual grasps by the manipulability of the arms, i.e., they quantify how movable
the arms are at the grasp. Mohan et al. [49] formulate motion generation as attractor dynamics
subject to external forces that implement the task.

Collision avoidance in unstructured environments requires methods for perceiving free, un-
known, and occupied space in the local vicinity of the robot. Vahrenkamp et al. [84] represent
the environment by geometric shape primitives and apply lazy collision checking and enlarged
robot models to speed up collision checks. Hornung et al. [32] integrate measurements of a laser
scanner and textured-light stereo cameras into sparse 3D occupancy maps that are represented
in octrees. Sensor motion is determined from joint position encoders and wheel odometry.

The lead beneficiary for this work package (UBO) has extensive experience in autonomous
manipulation. Fig. 2 shows some of the manipulation robots developed at University of Bonn.
Manipulation scenes can be segmented visually into object candidates through bottom-up cues
without explicit knowledge about specific objects. For instance, Holz et al. segmented depth
images of a time-of-flight camera into geometric shape primitives using a fast multi-resolution
RANSAC approach [30]. This approach was extended by Berner et al. [9] to detect compounds
of 3D and 2D shape primitives. Holz et al. [29] proposed fast methods for the segmentation of
planes in RGB-D images. Rusu et al. [62] proposed to describe and classify the local context
of points by Fast Point Feature Histograms. They regularize the classification in a conditional
random field on the point cloud to obtain coherent object segments. Holz and Behnke [28]
represent depth images in a triangular mesh and apply fast curvature-based segmentation.
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(a) (b) (c) (d)

Figure 2: Example manipulation robots at University of Bonn: (a) Depalettizing with Universal
Robots UR10 manipulator and Robotiq three-finger hand [31]; (b) Bottle opening with cognitive
service robot Cosero [74]; (c) Grasping a water-filled mug with space robot Explorer [77]; (d)
Cutting drywall with mobile manipulation robot Momaro [61].

A strong segmentation cue is common motion. Stückler and Behnke [75] proposed an ef-
ficient method for segmenting RGB-D video into moving rigid bodies. They used observed
common motion to infer object hierarchies [73].

Keypoint-based approaches have been a leap forward in the recognition and pose estimation
of specific objects (e.g. [43]). However, keypoints require textured objects. Recent approaches
overcome this drawback by exploiting intensity edges [26, 11] or geometric shape, if dense
depth is available. Hinterstoisser et al. [26] propose a real-time object template detection ap-
proach based on dominant color gradients and surface normals. Different view poses onto the
object need to be trained as separate templates to implement pose estimation. Choi et al. [11]
extract 2D edge templates in several view poses from a 3D mesh model of an object. The edge
templates are detected in gray-scale images and tracked using a particle filter in real-time. To es-
timate the pose of objects in depth images, several variants of the Fast Point Feature Histogram
have been proposed [62]. Signatures of histograms of orientations (SHOT) describe local shape
and color context at 3D key points [82]. The method determines a local 3D orientation at the
keypoints to define a reference frame for context description and pose voting. Each keypoint
votes for a relative pose of the object in a Hough voting scheme. Drost et al. [14] proposed a
method to match meshes that borrows concepts from the Generalized Hough Transform. They
build surface element (surfel) pairs and associate them efficiently with hash maps. Since each
surfel-pair defines a unique reference frame, pose can be estimated from surfel pair correspon-
dences through Hough voting. The method has been extended by contours [12] and color [10].
Stueckler and Behnke [72] also propose multi-resolution surfel maps for 3D modeling and real-
time tracking of objects. Multi-resolution surfel maps represent 3D point clouds and RGB-D
measurements by shape and color distributions in voxels within an octree. The maps can be
efficiently aggregated from RGB-D images and support real-time registration. Full-view mod-
els of objects are obtained through simultaneous localization and mapping (SLAM) to which
then RGB-D images are registered in real-time to estimate object pose. This approach has been
applied for SLAM in indoor scenes [71]. It was extended by McElhone et al. [46] to the joint
detection and tracking of objects. Other recent methods for object proposal exploit assumptions
made on the map structure, on appearance in RBG images, on motion fields or on a combination
of the information coming from these modalities [24, 86, 38, 88].

In recent years, deep learning approaches [5, 65] are the leading methods for many pattern
recognition tasks. In previous work, we applied them successfully to image denoising [4], image
categorization [6, 63, 83, 69], object detection [7, 67], and object-class segmentation [66, 27,
51, 55]. Another popular method for object-class segmentations are random forests, which we
implemented on GPU [68]. By aggregating semantic segmentations in 3D, semantic maps can
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be created [80].
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3 Progress in CENTAURO beyond the State-of-the-Art
In contrast to previous work on telemanipulation systems, the CENTAURO system will pro-
vide full kinesthetic feedback for the upper body of the main operator. The CENTAURO robot
will be able to perform dexterous dual-arm manipulation skills under direct control of the main
operator as well as elementary tasks semi-autonomously under the supervision of the opera-
tors. While elementary autonomous skills such as picking and placing objects with one and two
arms will be implemented using grasp and motion planning, grasps for complex capabilities like
door-opening or tool-use will be learned from human demonstrations that are given through the
telemanipulation interface. CENTAURO will create the foundations for teaching robots dexter-
ous dual-arm manipulation through direct human demonstration. The planned or learned grasp
and motion strategies will support the operators in decision-making by displaying suggested
grasps and motions using augmented reality techniques, based on object and workspace per-
ception from robot sensors. While the operators could perform the task themselves, they may
also let the robot execute suggestions autonomously. For manipulating objects, stability of the
CENTAURO robot will be established through dynamic whole-body control of CENTAURO’s
compliant robot mechanism. We pursue two means for planning grasps on the object. If no
example grasps are known for the object, for instance, if the robot shall move debris, grasps
will be planned on the measured 3D shape of the object. We will also build a grasp database
for specific objects such as door handles or tools. These grasps are learned by the robot from
human demonstrations through telemanipulation. In contrast to many previous approaches to
learning from human demonstrations, our approach does not require a mapping from the human
body to the robot kinematics, since the robot directly experiences the grasps in its own body.

To examine the reachability of grasps and to execute them, we will generate a direct obstacle-
avoiding reach towards the grasps through simulation of the whole-body dynamics. Learned
motions from previous demonstrations will be adapted to the current situation perceived by
the robot. Furthermore, new motion sequences will be generated automatically by meaning-
ful combination of known motions. Telemanipulation will handle more complex manipulation
scenarios that would require more sophisticated task and motion planning.

We pursue novel means to perceive the robot workspace that consolidate research in work-
space perception with state-of-the-art mapping and motion estimation, investigating the pos-
sibility to exploit a combination of 2D , 2.5D and 3D sensors. We will augment the maps
with information about free, unknown, and occupied space through signed distance to occu-
pied voxels. The map representation supports fast volume queries for obstacle-avoiding motion
generation. Live images and scans will be efficiently aligned within a single multi-resolution
occupancy map of the local surrounding of the robot thus improving over time the detail level of
the map as well as the local egomotion estimates using state-of-the-art simultaneous localization
and mapping (SLAM) approaches and bundle adjustment techniques.

For perceiving objects, we will extend existing methods for object proposals and classifica-
tion, aiming at exploitation of the multimodal information (RGB, depth, occupancy and motion)
available through our workspace map. Furthermore, we will investigate the advantages and dis-
advantages of alternative methods for object pose estimation such as fine-grained classification
by means of an extensive model dataset or fitting of a generic deformable model describing the
whole object class.
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4 Manipulation Concept

4.1 Object and Workspace Perception (Task 6.1)
A high-quality, intuitive visualization of the CENTAURO robot surroundings supports the op-
erator to better understand the disaster area. The variety of disaster scenarios and manipulation
tasks that the system will face implies the need to follow a dynamic approach in the process of
creating spatial maps. As described in the Deliverable 5.1 Sec. 4.2, a representation on three
layers (or levels) of details will be investigated and proposed for the CENTAURO system to
address the needs of different tasks.

The workspace for manipulation tasks will be mapped as a highly detailed 3D model (or
occupancy map) catering to the needs of such a high precision task. The intended idea is to have
a dense structure estimation pipeline at very close range. The maximum resolution of the maps
gradually decreases with the distance from the sensor. In this way, measurement principles and
noise properties of typical sensors such as cameras, RGB-D cameras and/or 3D laser scanner
are considered, and processing is focused on measurable detail. The maps maintain information
in voxels about free, occupied, and unknown space through signed distance towards the sampled
surface (positive: free, negative: unknown).

This form of occupancy map provides detailed information that can be exploited for col-
lision avoidance when moving in the workspace or when manipulating objects. However,
when the task does not require high precision, collision detection can be performed efficiently
by enclosing occupied space in simple shapes such as spheres or parallelepipedes (bounding
spheres/boxes). These can be derived from the appropriate level of the map depending on the
accuracy required by the task.

As described in D5.1, this highly detailed occupancy map is created on demand, i.e., when
the robot needs to perform a manipulation task, it makes use of active sensing to acquire the
views needed to build a detailed model. The actual resolution/accuracy of the model will vary
from millimeters to centimeters depending on the needs and the sensor limits.

Once an accurate map of the workspace is built, a step of object identification and tracking
can follow with the purpose of aiding the operator in understanding the scene (teleoperation
mode) or allowing the robot to perform selected manipulation tasks autonomously. In the case
of autonomous mode, this step becomes of fundamental importance.

Object identification and tracking will be handled in two ways, depending on whether an
object belongs to a known class (for example a tool) or is to be treated as generic object in the
context of the manipulation task (for example some rubble on the workspace). Also a transition
between the two cases is possible (e.g. generic model of a door handle).

The handling of objects within the workspace begins with the identification of the presence
of an object in the constructed map and in the relative RGB(-D) images. Object hypotheses
will be derived from local regularity assumptions made on the map structure (objects lying on
a plane) [45, 24, 2], on appearance (color and/or depth discontinuities) [86, 38, 1] or motion
(when interacted with, objects do not follow the static scene assumption, i.e. they can be iden-
tified as entities moving in the workspace when touched and interacted with) [25, 16, 88].

When an object is detected in the scene, its appearance and shape can be tested within a
classification framework to identify whether the object belongs to a known class (for example a
set of tools the robot knows how to handle) or not. In the latter case, the object is classified as
an unknown object, in the former the object is identified as either a tool or a known element of
the environment (for example a door handle).

To facilitate grasping a tool or other objects with task constraints, its pose must be identified.

4 MANIPULATION CONCEPT 13
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For this purpose, the perceived appearance and 3D shape of the object is registered with a
previously learned model so that its pose can be identified with respect to a standard frame.
This can be achieved by classifying the object as a specific instance of the class chosen from
a large dataset of detailed models or by fitting a generic, deformable model to the perceived
instance [57]. The actual method to implement is an open problem and it will be chosen taking
into account complexity, flexibility and and accessibility of the required data.

With the aim to facilitate motion planning and grasping, the maps shall support fast colli-
sion checking with bounding boxes and spheres derived from the detected objects as well as
obstacles. The specifics of how collision detection and avoidance will be handled are described
in the following sections.

4.2 Collision-aware Motion Generation (Task 6.2)
Task 6.2 develops collision-aware motion control for use during telemanipulation as well as
autonomous manipulation. It will consider self collision avoidance as well as environment
collision avoidance. This task depends on Task 6.1 which implements the perception of objects
in the workspace and generates a workspace map which contains information about occupied
and free regions that will be used in this task to calculate distances and potential collisions
between the robot and its environment. The results of this task will be used in Task 6.3, 6.4,
and 6.5 for autonomous planning and execution of single-arm as well as bimanual motions.
Furthermore, the results of this task will be used for control of the robot during telemanipulation
by displaying potential collisions to the main operator through the kinesthetic feedback of the
exoskeleton.

The Flexible Collision Library (FCL) [53] will be used for collision checking. It supports
collision detection, distance computation, and supplies contact information if objects are in
collision with one another. It supports checks between different shape primitives (sphere, box,
cone, cylinder) as well as meshes and octrees, which are represented using the OctoMap library
[33]. The FCL is also integrated into ROS through the MoveIt!1 package. Even though the
FCL is capable of computing distances between different objects, this functionality is not fully
available through the interface of the MoveIt! package yet. Thus, this interface needs to be
adapted to fit our needs.

In order to physically interact with the environment through the whole robot body, telema-
nipulation needs to support a mode which allows physical interaction between the robot and its
environment. Then again, it is difficult for the operator to continuously monitor collisions for
all body parts. To assist the operator in cases that do only require physical interaction of robot
hands and feet with the world, a collision-avoiding mode for the remaining body parts will be
developed. This will be implemented by the specification of a symmetrical matrix for all body
parts (e.g. left arm, front right leg) and the environment, which defines if

(A) both objects can be in collision,

(B) both objects are not allowed to be in collision, or

(C) the collision between both objects is not checked at all to save computing time.

An example for such a matrix might look like this:

1http://moveit.ros.org/
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Figure 3: Left: Detailed rendering of the Momaro robot. Right: Fine collision model of the
same robot to ease collision checking based on the convex hull of its limbs.

Left Hand Right Hand Left Arm ... Environment
Left Hand A B A
Right Hand A B A
Left Arm B B B
Back Left Leg C C C A
...
Environment A A B

This matrix would allow interaction between the hands of the robot and its environment, but
checks for collisions of the robot arms with the hands and the environment. Furthermore, colli-
sions between the back left leg and and the hands and arms are not checked at all, as these robot
parts cannot collide during typical tasks. These matrices can be swapped during operation of
the CENTAURO robot w.r.t. the current task.

As the collision checking module is not only used during execution of motions on the robot
but also for motion planning, different abstractions of the robot model can be used for colli-
sion checking depending on the current requirements regarding available computing time. For
planning of motions and simulation of planned motions in simulation prior to the execution on
the real robot, a coarse and conservative collision shape of the robot can be employed as the
time between the beginning of the planning and the actual execution of the motion should be
minimized. More costly collision checking using a finer collision model can be used during the
actual execution of the motion as more time is available. This might prove useful, as the results
of this checking are more accurate. Hence, we plan to provide two collision models based on
the actual robot model:

• A fine collision model which is based on the convex hull of the exact robot model. This
model can be used for collision avoidance computation during (teleoperated) motion ex-
ecution on the robot (see Fig. 3).

• A coarse collision model which simplifies the coarse model by representing robot body
parts by locally circumscribing shape primitives such as spheres and cubes to ease col-
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Figure 4: Rendering of the robot model for the support operator indicating close proximity
between the lower left arm and the base.

lision checking. This approach has been used by Dietrich et al. [13] to realize colli-
sion avoidance with a sampling time of 1 ms using a sphere approximation of their robot
Rollin’ Justin.

Obstacle avoidance will then be implemented through virtual forces that act from the found
obstacles onto the robot limbs. These forces are used for collision-avoiding control of the
robot as well as for displaying potential collisions to the main operator through the kinesthetic
feedback of the exoskeleton. For each limb of the upper body of the robot, the distance to all
other limbs and obstacles within the local workspace will be calculated based on the previously
defined collision matrix. If the distance between a given pair is lower than a given threshold,
the direction and distance of this pair will be used to create a potential field which generates a
repulsive force between these potentially colliding parts. This information will also be sent to
the operator interface to render forces through the kinesthetic feedback of the exoskeleton to the
operator. Furthermore, it can also be visually displayed to the main and support operators, e.g.
by coloring the limbs of the rendered robot model according to the nearness of the given robot
limb to an obstacles (see Fig. 4) or sonified, e.g. by beeping with increased frequency when the
distance to obstacles decreases.

4.3 Grasp and Motion Planning for Single-arm Object Pick-and-Place
(Task 6.3)

Task 6.3 develops an assistance module, which helps the operators in performing basic pick-
and-place tasks using a single arm by semi-autonomously finding suitable grasps and executing
motion primitives fitted for the current situation. This will reduce the operator workload for
simple and repetitive tasks. The required motion primitives will be either designed by the de-
veloper of manipulation planning or will be extracted from previous demonstrations of similar
motions, which have been executed by the human operator using the exoskeleton. A big ad-
vantage of the CENTAURO system is that these demonstrations can be recorded during normal
operation of the system and therefore allow the system to improve its capabilities over time.
Finding appropriate grasps on objects is necessary for the majority of manipulation problems.
To this end, the module developed in this task will contain two grasp planners. The first one
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will be a state-of-the-art grasp planner, which can offer grasps on any kind of object measurable
by the robot sensors. The second generator will learn grasps from telemanipulation demon-
strations. This task depends heavily on the recognition of objects developed in Task 6.1 and
the recording of the motions of the operator wearing the exoskeleton, which will be developed
in Work package 3. Its results will be used in Task 6.5 to allow the autonomous execution of
motions and also in the operator interface developed in Task 3.5 to display possible grasps to
the operator.

4.3.1 Grasp Planning

This module will contain two grasp generators. The first one will be a state-of-the-art grasp
planner, which can offer grasps on any kind of objects measurable by the robot sensors using
heuristics. The second generator will query a grasp database of known grasps for the object
which should be grasped. This database will be filled by previously observed grasps during
telemanipulation. Grasps from the learning generator are expected to be more useful for specific
grasps occurring during tool use or other interaction motions, while the grasp planner will be
useful for previously unknown objects or when the object merely needs to be carried, not used.
The grasps candidates generated by both generators will be displayed to the operator by the user
interface developed in Task 3.5. for evaluation and selection. If a grasp is selected, the robot
will execute it autonomously under the supervision of the operators using the motion planner
described in 4.3.2. The next two paragraphs will explain the two grasp planners in more detail.

Grasp Sampling This grasp planner will sample grasps for perceived objects following a
state-of-the-art approach such as medial axis transform (MAT) based grasp sampling [58] or
primitive-based sampling [79] which we have used in previous work. These methods will gen-
erate multiple grasp candidates for each object, which need to be ranked by their applicability.
A grasp is defined by the pose of the end effector relative to the perceived object at which the
fingers of the hand are closed. Additionally, a pre-grasp pose is automatically derived from the
sampled grasp pose, to allow a safe approach of the object by the gripper.

Several checks are performed on each grasp candidate to discard unfeasible grasp and to evalu-
ate grasp quality:

• The reachability of the grasp pose and pre-grasp pose will be checked using a precom-
puted reachability map, which is a look-up table for the existence of valid IK solutions.
If either the grasp pose or the pre-grasp pose is not reachable from the robot’s current
position, the grasp candidate is discarded.

• If valid IK solutions have been found for the grasp and pre-grasp pose, these configura-
tions are checked for collisions with the environment. If either produces a collision, this
grasp is discarded.

• The path between the pre-grasp and grasp pose of the grasp candidate is checked for
collisions between the robot hand and the workspace map. If the path is not collision-
free, the grasp is discarded.

• Next, a full whole-body simulation of the reaching motion with collision avoidance will
be performed using the motion planning described below. If the simulated execution of
the motion is not successful, e.g. due to insufficient balance of the robot, the grasp is
discarded.
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Figure 5: Control commands from the main operator as well as the resulting sensory information
(e.g. measured interaction forces) of the robot will be recorded to solve tasks autonomously by
learning from demonstrations.

The resulting grasps, which passes these tests, will be ranked according to their properties e.g.
by checking how much the object is caged to estimate the stability of the grasp and the estimated
energy consumption to reach this specific grasp. If no grasp passes these tests, the system will
indicate a problem to the operator and rely on the operator to resolve the situation.

Grasp Database While telemanipulation via the operators will be required for more complex,
previously unknown tasks, the CENTAURO system should be able to learn continuously from
the demonstrations recorded during telemanipulation and offer an autonomous alternative the
next time the task is encountered. To this end, we will build a grasp database for specific
objects such as door hinges or tools that are tracked using the perception modules developed in
Task 6.1. Grasps demonstrated during telemanipulation will be represented relative to the local
reference frame of the object and made persistent in the grasp database. Control commands and
sensory feedback of the robot (see Fig. 5), e.g. the interaction forces between the fingers of
the robot hand and the object, during the teleoperated grasp will be recorded and stored in the
database along with the grasp pose. If the object is perceived again, grasps of the objects will
be retrieved from the database and transformed according to the actual pose of the object. The
object is non-rigidly registered to the learned template. While methods for non-rigid instance-
instance registration of objects exist (e.g. [76]), we would like to employ non-rigid instance-
category registration. To this end, the template would be represented as the distribution over all
observed object instances in a given category. The non-rigid registration allows skill transfer
to the currently observed object. The resulting grasp candidates will be checked for feasibility
using the same checks described above. Resulting feasible grasps will be provided to the control
station to be suggested to the support operator in Task 3.5. If a grasp is selected and executed,
the system will try to mimic the previously measured interaction forces of the fingers with the
object while grasping. Hence, lightweight or fragile objects as well as heavy objects can be
grasped safely without the risk of crushing or dropping a grasped object.

If no feasible grasp can be retrieved from the grasp database, the system will try to sample an
appropriate grasp using the method mentioned above.
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4.3.2 Motion Planning

Human pick and place motions are similar for recurring tasks, suggesting that humans do not
plan these motions from scratch each time a task of this kind needs to be solved. We want
to adapt this idea for motion planning and avoid planning from scratch for tasks which have
already been solved. Instead, we want to rely on previous solutions and adapt them to the
current situation. To this end, we will record the control commands issued by the operator
wearing the exoskeleton during pick and place tasks. We will extract motion primitives based on
these recordings, which we have already done in previous work [20]. In contrast to our previous
work, we will rely on a more general probabilistic approach which is described in Section 4.5. If
similar pick and place tasks need to be solved, the extracted motion primitives will be adapted to
the new situation and executed. This approach will result in more human-like movements than
planning from scratch, which will make it easier for the human operator to observe the executed
motions and to assess their utility, thus reducing the cognitive workload for supervision of the
system. The demonstrated motions will implicitly also encode task constrains, such as holding
open fluid containers upright.

Motions will be represented as 6D (position and orientation) trajectories of the end effector
in task space, encoded relative to the starting pose of the motion and the ending pose, e.g. the
object which should be manipulated. They will also contain information on how the redundancy
of the manipulator is resolved. Additionally, obstacles in the vicinity of the object will also be
incorporated to help explaining deviations from direct paths. Furthermore, the interaction forces
measured during the motion will be recorded as well. During an adapted execution of the motion
primitive in a similar situation, the system will try to mimic the force it encountered during the
recording. This could be useful, e.g., to pick up a small object from a table by pressing the finger
onto the table with similar force to previously recorded demonstrations and then closing the
fingers. Additionally, this would allow for learning the interaction forces which are necessary
for certain manipulation tasks such as turning valves. To interact with the environment, the
motion generator will use the compliant control of the robot developed in Task 2.3.

To avoid collisions during the execution of adapted motion primitives, motions will be ex-
ecuted under the influence of a repelling force based on Task 6.2. The end effector will be re-
pelled from obstacles in its vicinity and thereby deviate from the intended motion of the motion
primitive. To do this, a dynamic potential field [54] is used based on the distance calculations
performed in Task 6.2. The magnitude of the potential field increases with the speed of the end
effector and decreases with the angle between the current velocity direction of the end effector
and the direction towards the obstacle, thus allowing for smoother trajectories. Reaching and re-
tracting motions will be simulated using a full whole-body simulation to access their feasibility
prior to their actual execution on the CENTAURO robot. For the retracting section during grasp
motions, the grasped object is virtually attached to the end effector for collision checking. If the
simulated execution fails or no suitable motion primitive is available for the current situation,
the system can ask the operator the perform a demonstration for the task which will be used the
next time a similar situation occurs.

As a fallback system, we will also integrate motion planning using state-of-the-art sampling
based methods provided by the Open Motion Planning Library [81] which is available in the
ROS ecosystem trough the previously mentioned MoveIt! plug-in. Furthermore, state of the art
optimization based motion planning algorithms like STOMP which we already used in previous
work [70], can be integrated as a fallback in case the motions generated from the demonstrations
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are not sufficient. This might be the case if not enough demonstrations were provided to the
system for the situation at hand.

As the generated motions are represented as position and orientation of the end effector in
the workspace, the redundancy resolution of the robot arm has to be resolved independently. For
this purpose, we are going to use a gradient projection method which projects the gradient of a
cost function into the nullspace of the robot arm similar to the methods embodied by Gienger et
al. [17]. The cost function will be based on the distances which are defined in Task 6.2 to guide
the limbs of the robot arm away from obstacles. If collision avoidance is not possible using
only nullspace optimization, the system will also be able to change the desired pose of the end
effector and deviate from the planned end effector trajectory.

4.4 Grasp and Motion Planning for Bimanual Object Pick-and-Place (Task
6.4)

This task extends the work of Task 6.3 to grasp and motion planning for both arms simulta-
neously. Bimanual grasping is typically required for objects, which are too large or too heavy
to grasp with one arm. It might also be required for more complex manipulation tasks (e.g.
opening a container). Furthermore, the strength of two arms might be required for manipulating
objects that require larger interaction forces. e.g. a stuck valve.

Grasp candidates will be generated as explained in section 4.3.1. The difference to single-
armed manipulation is now that two reachable, non-colliding grasps on the object are required.
Concurrent grasps for both arms are additionally stored in the grasp database.

The system will—similar to Task 6.3—be able to learn bimanual motions from demonstra-
tions. Both arms will be treated in the same way. In addition to the individual arm motions, con-
straints between the end-effectors, such as their distance or interaction forces will be recorded.
The motions will be represented in task space relative to the relevant object as in Task 6.3. As
the motion of this closed kinematic chain is overconstrained, the compliance of the robot will
be used to resolve potential conflicts. The same collision avoidance technique as in Task 6.3
will be used, but now the potential fields will affect the motion of both end effectors at the same
time, with the effects mediated by the simultaneously grasped object.

4.5 Autonomous Execution of Manipulation Commands (Task 6.5)
The CENTAURO system will offer grasp candidates generated in Task 6.3 and Task 6.4 for
objects in the immediate vicinity of the robot to the operator in real-time. A visual display (e.g.
a transparent model of the end effector) will show the grasp poses, so that the operator can
decide whether a generated grasp is feasible and useful. Details of the actual interface will be
defined in Task 3.5. As soon as the operator triggers a grasp, the planned grasp motion will be
executed using the collision-aware dynamic whole body control. If the robot is near collision
during the motion, execution will be stopped and the operator will be notified about the problem
and which parts of the robot are in danger of collision (see Fig. 4).

While grasp planning and motion planning for pick and place tasks is important for a large
part of manipulation, we will also investigate possibilities for reducing the operator load by
offering assistance during other manipulation tasks (e.g. turning valves, pushing objects, etc.).
Because the space of possible manipulation actions is very large, we plan to use a probabilistic
approach. Recent works in the field of computer animation, for example Motion Graphs++ [48],
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can generate new motions from a motion database, subject to kinematic and semantic constrains.
Motions recorded during teleoperation will be segmented and inserted into the motion graph.
Therefore, we will develop a method for segmenting demonstrated motions into short clips
between keyframes. These keyframes will be used for parametrization of the motions prior
to their execution. Keyframes will be placed automatically at key points during the motion,
e.g. at contact changes or stationary points. Another possibility to detect segment boarders
is based on the recognition of velocity zero-crossings [59] or zero-crossings of acceleration.
New motions can be generated using a graph search in the motion graph and chaining the
motions along the resulting path together. This will enable the system to generate new motions
for similar situations by combining the available motion primitives in a meaningful way. Key
prerequisite for this is the establishment of correspondences between the known models and the
current situation via perception of the manipulated objects in Task 6.1. The motions can then
be warped to the situation at hand in a non-rigid way.
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5 Implementation Plan
This section provides a plan for the implementation of the manipulation concept. The imple-
mentation of the different tasks will not be independent from one another. Instead, the tasks of
this work package depend on each other and there are also dependencies to tasks of other work
packages, as can be seen in Figure 6. As the implementation is an iterative process, interfaces
defined between different tasks may be subject to change. We will constantly integrate the in-
dividual components into working subsystems to identify weak points in the implementation
by regularly evaluating the performance of subcomponents w.r.t. to the tasks which should be
tackled by the CENTAURO system. This will allow us to identify weak points of the system
and to take counter measurements to mitigate possible impacts on the whole project. To en-
sure this, evaluation of the components developed in this work package will take place in close
coordination with the partners leading the other work packages.

UBO has the most person months (30 PM out of 54 PM) in Work package 6 and will lead
the implementation of Tasks 6.2–6.5. It will be supported by SSSA (6 PM) and IIT (6 PM) in
Tasks 6.2, 6.3 and 6.4. LIU has the second highest number of person months (12 PM) in Work
package 6 and will lead the implementation of Task 6.1. LIU will be supported by UBO during
this task.

The goal of this work package is to integrate components to a first working system as fast
as possible and extend it successively. To make this possible, we will rely on place holder
components and already available software until the respective components are available. As in
the whole CENTAURO project, ROS will be used as a middleware. It allows to independently
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World Model
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Figure 6: Interaction of tasks of Work package 6 with tasks of the other work packages.
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implement components, which are loosely coupled to one another. Furthermore, ROS allows
easy definition of interfaces between different components and therefore enables us to easily
exchange components during development. To speed up the development, we will use the ROS
plug-in MoveIt! for the implementation of the motion planning system. It already provides
sampling based planners through the Open Motion Planning Library, which will be integrated
in this work package as a fallback system. Furthermore, we will use the Flexible Collision
Library for collision detection and distance computations and the OctoMap Library for the
representation of the workspace.

As the CENTAURO robot is not available at the beginning of the development, we will
make use of replacement components during the implementation of this work package. At the
beginning of the development phase, the simulation environment envisioned in the CENTAURO
project will neither be available, therefore development will start based on the software com-
ponents already available through ROS, e.g. Gazebo as a simulator. As soon as the simulation
environment with the model of the CENTAURO robot is provided by RWTH, we will adapt the
developed techniques to this simulation. While simulation is heavily used during development
to facilitate the implementation and integration process, it will be necessary to use real hardware
as soon as possible to make sure that the software components are capable of handling realistic
scenarios. To this end, we will use our mobile manipulation robot Momaro as a surrogate robot
platform, which has a similar configuration as the CENTAURO robot. The individual software
components developed in this work package will be designed to be easily portable from the
Momaro robot to the CENTAURO robot.

Figure 7 shows a rough estimate for the schedule of the implementation of Work package 6.
LIU will start the development process of Task 6.1 early in the project, but its results may not
be directly usable for the implementation of collision-aware motion generation, since this task
will be started in parallel by UBO. Thus, the implementation of Task 6.2 will initially be based
on artificial input. As soon as first results of Task 6.1 are available, both tasks will be evaluated
in conjunction. The results of Task 6.2 will be used by SSSA to give the operator feedback over
obstacle in the vicinity of the robot.

As the generation of motions based on previous demonstrations is an open research topic
and its applicability and reliability cannot be guaranteed, we will start by implementing and
integrating the fallback motion planning methods based on already available state-of-the-art
sampling algorithms. This ensures that motion planning for pick and place tasks will be avail-
able regardless of the outcome of the research and can be integrated as a core component in MS2
in M17. Similarly, we will start by integrating grasp planning used in our previous work [79]
and evaluate its performance on objects relevant for the manipulation tasks envisioned for the
CENTAURO system.

As soon as the fallback method is integrated, we will start the development of motion gener-
ation based on previously recorded human demonstrations. As the exoskeleton is not available

Figure 7: Gantt chart of the tasks of Work package 6.
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at the start of the development process, we will use 6D magnetic trackers to track the hand
motions of the operator during demonstrations, as we already did in previous work [61]. In
contrast to the CENTAURO exoskeleton, which will measure the joint angles of the operator
and map those to the joints of the CENTAURO robot, the currently available magnetic trackers
only measure the position and orientation of the operator hands in the workspace. Neverthe-
less, as the motions extracted in Task 6.3 and 6.4 will be represented in task space, this will
not pose a problem during development and porting the solution to the exoskeleton should not
require major changes. Since the Momaro platform is—in contrast to the CENTAURO robot—
not equipped with 6D force sensors in its wrists, we will adapt the developed motion generation
framework to be able to handle forces and reply them during execution at a later time.

After the development of single-arm motions, which will be available for integration in
M27, we will extend the developed methods to bimanual capabilities for the Final Integrated
CENTAURO System.

In parallel to the development of Task 6.3 and Task 6.4, we will start to integrate the au-
tonomous execution of operator commands. This tasks will be done in close collaboration with
SSSA, which is responsible for the operator interface.
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6 Conclusions
In this deliverable we have presented the manipulation concept for the CENTAURO robot.

We are going to implement workspace and object perception to recognize obstacles in the
vicinity of the robot and to identify objects which can be manipulated by the robot. Based
on this perception, we will develop collision-aware motion generation for the CENTAURO
robot. This will be based on potential fields which will produce repelling forces onto the robot
limbs. These forces can also be rendered as kinesthetic feedback to the exoskeleton to make the
operator aware of obstacles. Furthermore, we are going to develop grasp and motion planning
to enable the robot to autonomously execute simple manipulation tasks on operator request. Our
approach to grasp and motion planning is data driven and we will build a database of grasps for
known objects as well as a primitives of arm motions. This grasp and motion primitive database
will be filled by example grasps and example motions generated by the operator controlling
the CENTAURO robot by means of the exoskeleton. The grasps and motion primitives will
be instantiated in similar situations by adapting them according to the work space and object
perception and chaining them to motion graphs.

UBO will lead the development in this work package and will be supported by LIU, SSSA
and IIT. To ensure the successful implementation and integration of this work package into the
overall CENTAURO system, we will iteratively develop the individual software components
and evaluate their performance in close collaboration with all concerned partners of the other
work packages. Furthermore, we will integrate state-of-the-art components which are already
available as a fallback for situations in which we have not collected sufficient a sufficient number
of demonstrations.
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