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CENTAURO – 644839 D2.4 Balance and Wheeled Locomotion

Executive Summary

Within WP2 the main control activities during the second half of the project was related to
the whole-body control of the CENTAURO robot. The first main result from this effort is
the wheeled control of the CENTAURO robot. This report provides the details of the
whol-body controller and wheeled motion control scheme accounting for series elastic
torque-controlled actuators developed within WP2. In particular, the report presents an
overview of the balancing control, as well as kinematics control for steering strategies.
Finally, simulation results presenting the functionality of proposed scheme in performing
balancing, and executing various locomotion trajectories through wheel motions are
displayed.
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1 Introduction
This report describes the development of tasks 2.3 and 2.4 from WP2 related to whole-body
control, balancing, and wheeled motion. The methods adopted for these tasks are described,
and important implementation details are pointed out. Then, the CENTAURO simulation results
are presented to validate selected approaches1.

In the first section, implemented controller scheme is described starting from a centralised
controller, through an inverse kinematics resolution to operational-space and balancing tasks;
while the second section proposes a wheeled motion scheme.

2 Whole-body Control and Balancing
In this section we present a scheme for the whole-body control of the CENTAURO robot and
eventually utilise it for balancing. The CENTAURO robot design offers multiple operation
modes including legged, wheeled, and combined locomotion. Moreover, depending on the
task, various conditions may arise that impose/release a set of constraints on body states. To
fully exploit the robot potential, the control scheme needs to be capable of adapting to such
changes while respecting joint state limits on kinematic and dynamic levels. To this end, an
operational space control [20] is often employed to deal with redundant systems, e.g. in case
of quadrupeds [16], [36], or manipulators [9], [32].

The literature presents several measures to evaluate the system stability that includes the
most widely recognised centre of mass (CoM) position, zero moment point (ZMP) and centre
of pressure (CoP) [31]. Most research on the stability of legged robots have been dedicated to
bipeds, e.g. [15, 17, 18, 23], while quadrupeds, as statically stable systems, have attracted less
attention. Nevertheless, an extension of methods developed for humanoid robots to multi-legged
systems is not always straightforward because additional factors such as workspace limitations
and discontinuities in a support polygon have to be taken into account [21, 22]. Moreover,
commonly used models in humanoids [24,39,40] and their extensions to quadrupeds [3,11,26]
are not directly applicable to the CENTAURO robot due to its non-negligible leg dynamics,
and the upper-body structure. In this work, we employ the CoM regulation for the CENTAURO
robot balancing, that relies upon the whole-body control scheme to be detailed in next sections.

2.1 Floating-base Model of Leg-Wheeled Robots
In derivation of control schemes, a floating base model can be used with generalised
coordinates2

q̄ =
[
q̄Tb qTa

]T
, (1)

where q̄b ∈ {SE3 | <nb} refers to coordinates of any floating base representation, nb ∈ N
denotes the size of the floating base coordinates vector, and qa ∈ <na represents the vector of
link-side positions of actuated joints with na ∈ N symbolising the number of actuated joints.

1The videos associated with the simulations carried out in this work are available at https://www.
youtube.com/playlist?list=PLGYQZBk-v9IpojZXxGSoptThRbd65P12N

2In this document, 0(.)
(2)
1 denotes a state vector from a point 0 to a point 1 expressed in a reference frame 2. Its

simplified version 0(.)1 represents a state vector from a point 0 to a point 1 expressed in any reference frame, and
it is used whenever a formula does not depend on a specific reference frame. A symbol (.)(0)1 indicates the state
(.) of a point 1 expressed in a reference frame 0, and (.)des stands for the desired value of (.). Finally, multiple
subscripts/superscripts are comma separated.
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Figure 1: Reference frames arrangement for the contact point position estimation in the
legged-wheeled structure.

Therefore, the overall system is described by nc = na + nb coordinates. We can also define a
new set of generalised coordinates

q =
[
qTb qTa

]T
, (2)

with qb ∈ {SE3 | <6} denoting the floating base coordinates, and q ∈ <n with n = na + 6
therefore holds. The system’s dynamic model can then be presented by

M(q̄)q̈ + c(q̄, q̇) + g(q̄) = STτt(qa, q̇a,θ, θ̇) + JT
c (q̄)λ, (3)

where M ∈ <n×n stands for the corresponding generalised inertia matrix, c ∈ <n represents
Coriolis/centrifugal forces, g ∈ <n denotes the gravitational torque vector, τt ∈ <na is the
vector of transmission torques, and θ = [θ1, ..., θna ]

T refers to the motor position vector.
S =

[
0na×nb Ina×na

]
symbolises the actuation selection matrix, Jc ∈ <k×n describes the

constraints Jacobian, and λ ∈ <k stands for reaction forces with k ∈ N expressing the number
of system constraints.

2.2 Ground Centralised Controller
Each feet in contact with the ground is modelled using point-contact assumption as follows

wẋc,i = 0, (4)

with wxc,i ∈ <3 expressing the position vector from the world frame origin to the ith leg contact
point.

For a hybrid legged-wheeled system, in contrary to legged-robots with point feet (with
negligible foot geometry) or standard wheeled platforms (with fixed placement of wheels w.r.t
limbs), it is not possible to define a constant transformation between a wheel-ground contact
point and a body reference frame , see Fig. 1. Nevertheless, by assuming zero camber angle and
known ground orientation, the contact point position for the ith leg can be computed based on
the system kinematics

x
(g)
c,i = x

(g)
wheel,i −

[
0 0 r

]T
, (5)

where xwheel,i represents the ith wheel centre, xc,i symbolises the ith leg contact point and r
stands for the wheel radius. The contact constraints (4) can then be rewritten in a form

wẋc,i = Jc,iq̇ = ~0, (6)

2 WHOLE-BODY CONTROL AND BALANCING 6
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Figure 2: Scheme of the controller structure in the legged motion set-up.

with Jc,i ∈ <3×n denoting the ith leg constraints Jacobian. Finally, the overall constraints
Jacobian (Jc ∈ <3f×n) for wheels with ground contactis described by

Jc =

Jc,1
...

Jc,f

 . (7)

The contact constraint Jacobian Jc can also be expressed in a following form

Jc =
[
Jc1 Jc2 Jc3

]
, (8)

where f ∈ N denotes the number of legs with ground contact, Jc3 ∈ <6×f symbolises the part
of the Jacobian related to driving DoFs, Jc2 ∈ <6×f stands for the part related to ankles yaw
DoFs, and Jc1 ∈ <6×(n−2f) represents the remaining part of the constraints Jacobian.

2.3 Gravity Compensation for Compliant Joint Legged Robots
The scheme developed for the CENTAURO robot control is depicted in Fig. 2. The input
of the decentralised impedance/torque controller, presented in [19], is obtained from a
centralised controller to ensure accurate tracking of given references while replicating low
or high impedance behaviours. The centralised controller utilised in this work executes
flexible-joint gravity compensation, and therefore relies upon two components: rigid-joint
gravity compensation and elasticity model. Derivation of the former for robots subject to
contact constraints, e.g. legged robots or manipulators

in contact with environment, the external forces in the dynamic equation (3) have to be
considered. Over the years, several solutions based on an orthogonal decomposition of the
constraints Jacobian have been proposed to address this issue including [25], [1], and [2]. In
this work, a QR decomposition of the constraints Jacobian is used, as shown in [27]. It can be
expressed by

JT
c (q) = Q(q)R(q) (9)

where Q ∈ <n×n is an orthogonal matrix, and R ∈ <n×k is an upper triangular matrix with
rank(R) = l; l denotes number of independent constraints. Then, by applying (9) on (3), one
can obtain an equivalent dynamic model as

ScQ
T (q) (M(q)q̈ + c(q, q̇) + g(q)) = ScQ

T (q)STτ + Rλ, (10)

SuQ
T (q) (M(q)q̈ + c(q, q̇) + g(q)) = SuQ

T (q)STτ , (11)

where Sc =
[
Il×l 0l×(n−l)

]
expresses a selection matrix for the constrained part of the system

dynamics, and Su =
[
0(n−l)×l I(n−l)×(n−l)

]
stands for a selection matrix of the unconstrained

part of the system dynamics.

2 WHOLE-BODY CONTROL AND BALANCING 7
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The rigid-joint gravity compensation torque (τg ∈ <na) can then be defined as

τg(q) = (SuQ
T (q)ST )+SuQ

T (q)g(q), (12)

which is constructed based only on the contact points positions, in addition to typical model
parameters, and the external force measurement/estimation is not needed.

To account for joint compliance, it is essential to recall the corresponding dynamics, which
can be expressed by

Bmθ̈ + Dmθ̇ + τt(qa, q̇a,θ, θ̇) = τm, (13)

τt(qa, q̇a,θ, θ̇) = Kt(θ − qa) + Dt(θ̇ − q̇a), (14)

where Kt ∈ <na×na and Dt ∈ <na×na stand for the stiffness and damping matrices
corresponding to the passive elements, whereas τm ∈ <na denotes the motor torque vector,
Bm ∈ <na×na symbolises the motor inertia matrix and Dm ∈ <na×na expresses the motor
damping matrix.

From (11), (12), (13), and (14) in static condition, i.e. q̇a = q̈a = θ̇ = θ̈ = 0, one can
extract the desired motor positions vector as follows (see [43] for details)

θd = qd + K−1
t τg(q). (15)

2.4 Whole body Control Scheme
Higher-level tasks, such as operational-space position and orientation tasks, can be resolved via
an inverse kinematics scheme. However, to ensure the compatibility of the joint-space solutions
with the current/desired support state of the system, we include the set of contact constraints
(6), and/or other crucial constraints with the highest priority in the inverse kinematics scheme.
As a result, all higher-level tasks are projected to the null-space of the constraints Jacobian. It
reads as

q̇ = −J+
c ec (16)

with ec , 0 ∈ <k representing the constraints task error. The initial contact state is set from a
default configuration; while it is updated online on the basis of variations in the robot contact
state. Furthermore, additional contact points can be added or/and removed from the constraints
task if unpredicted contact points occur.

The operational-space position and orientation tasks can be defined for state regulation of
any point on the robot body, e.g. leg end-effectors. For a set of tasks determining the spatial
position of s ∈ N points/frames, it is shown by

q̇ = −J+
p µpep (17)

where Jp ∈ <3s×n symbolises the task Jacobian, µp ∈ <3s×3s = diag([µ1, ..., µ3s]) stands for
a tuning matrix, and ep = [eT1 , ..., e

T
s ]

T expresses the task error. For position tracking, the task
error reads as

∀i ∈ {1, . . . , s} : ei = xi,des − xi. (18)

On the other hand, the orientation task is defined with quaternions, and thus a task error is
expressed by [30]

∀i ∈ {1, . . . , s} : ei = wivi,des − wi,desvi − vi,des × vi (19)

where a general quaternion is defined as ρ = [w, vT ]T with w ∈ <1 symbolising the quaternion
scalar part and v ∈ <3 referring to the quaternion vector part.

2 WHOLE-BODY CONTROL AND BALANCING 8
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Multiple position and orientation tasks can be specified with different priorities; each can
control aset of points/frames defined by reference frames attached to the robot body. Moreover,
the definition of a point/frame in its reference frame can be updated online, without a need to
redefine the whole task. This is useful for contact points as they do not have fixed frames on the
robot.

2.5 Balancing
The balancing problem is addressed in this section by employing the generality of the developed
control scheme. According to the definition in [44], a mechanical system is statically balanced
when its centre of mass projection on the ground is within the convex support polygon confined
by the supporting feet. Therefore, a whole-body CoM regulation task has been implemented
at the velocity level. It is integrated into the aforesaid control scheme by defining the
corresponding task as follows

q̇ = −J+
CoMµCoM (XCoM,des −XCoM) , (20)

where µCoM ∈ <2×2 represents a tuning matrix, JCoM ∈2×n is the whole-body CoM Jacobian
determined using the sum of CoM Jacobians (iJCoM ) of robot parts weighted by their masses
(mj)

JCoM =
h∑

j=0

jJCoM

mj

(21)

with h ∈ N denoting number of robot parts.

2.6 Simulation Results
2.6.1 Pelvis Regulation

The control scheme has been evaluated in this section via simulation experiments on the
CENTAURO lower-body, when regulating the robot pelvis height. In this test, a set of step
trajectories were sent to the controller in operational space, assigning the desired pelvis height,
as demonstrated in Fig. 4.

Results with and without the centralised controller are presented in Figs. 5 and 6 with the
former showing the execution of the given task in the operational space, and the latter presenting
the front left knee pitch tracking error on the motor and link sides. The minimum pelvis height
for the system without the centralised controller (Fig. 5a) is 45 cm, while with the addition of
the centralised controller it can go down to 40 cm (Fig. 5b). It is due to a fact that the system

Figure 3: Scheme of the leg end-effector in the singular configuration.

2 WHOLE-BODY CONTROL AND BALANCING 9
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without the centralised controller cannot correctly hold the position, and starts destabilising
at this configuration. Fig. 6a shows that although the decentralised controller correctly drives
the tracking error on the motor-side to zero, displacements due to the gravity effect causes
steady-state position errors on the link-side.

2.6.2 Balancing

In this section, the validity of the CoM regulation approach is presented in a simulation when

Figure 4: Robot executing the height regulation task.

(a) without centralised controller (b) with centralised controller

Figure 5: Operational space tracking error for the height regulation task

(a) without centralised controller (b) with centralised controller

Figure 6: Joint space tracking error of the left front knee pitch joint for the height regulation
task: motor-side and link-side position error are shown, respectively, in red line, and greed dash
lines.

2 WHOLE-BODY CONTROL AND BALANCING 10
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commanding the robot to move its CoM along a circular trajectory of 12 cm radius, and to
maintain its height, while legs keep the ground contacts. Figure 7 presents a few poses of the
robot when executing the above-said trajectories, and Fig. 8 shows the CoM position tracking
results.

3 Wheeled motion
Motion control design for a platform with steerable wheels has to address a singularity problem
occurring when the wheel camber and caster angles are zero. In this case, the wheel steering
motion cannot be resolved by only using the aforementioned contact point assumption, and a

Figure 7: Robot performing the CoM tracking for a 12 cm-radius-circular-trajectory.

Figure 8: Centre of mass tracking error for the CoM regulation task.

3 WHEELED MOTION 11
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non-holonomic constraint has to be satisfied to move a system with constant support polygon.
To coordinate a steering motion in a way that it complies with the non-holonomic constraint,
[33] and [6] proposed switching between walking and driving modes. [14] and [13] propounded
to separate the ankle yaw and body posture kinematics, and solve the former for a desired
steering angle. Furthermore, [12, 28, 29, 42] utilised a second order kinematic model described
by both velocities and accelerations. The work in [10], however, employed the instantaneous
centre of rotation (ICR) concept. The steering motion control of legged-wheeled systems highly
inherit from their more extensively studied standard predecessors. To control all-steerable
mobile robots, the literature has widely examined modelling with ICR [4, 5, 8, 35, 37]. It is
often in combination with artificial potential fields method to avoid singularities [7, 34]. .

3.1 Driving mode through inverse kinematics control
The first-order kinematic model of a leg-wheeled platform is derived to solve the constraints
equation (6) for the pelvis frame coordinates [13]. In this work the floating base model with the
prioritised inverse kinematics is used, so that the positioning is carried out when the constraints
task (16) are carried out at the highest priority level. Then, the system is controlled through the
position and orientation tasks (17) defined at the pelvis reference frame. Choosing the floating
base as the reference frame, the position Jp,pelvis and orientation Jq,pelvis tasks Jacobians are

Jp,pelvis =
[
I3×3 03×(3+na)

]
, (22)

Jq,pelvis =
[
03×3 I3×3 03×na

]
. (23)

To additionally control the support polygon, a task on the wheels centres along the x and y
coordinatesXwheels ∈ <2f is added

q̇ = J+
wheelsẊwheels (24)

with Jwheels ∈ <2f×n standing for the corresponding Jacobian matrix in a form

Jwheels =
[
Jwheels1 Jwheels2

]
,
[
Jwheels1 0

]
. (25)

where Jwheels2 ∈ <2f refers to the part of Jacobian related to the steering and driving DoFs, and
Jwheels1 ∈ <n−2f expresses the remaining part of the Jacobian.

The solution can then be found through the inverse kinematics scheme; except for when
the axis of an ankle yaw axis is perpendicular to the ground (Figure 3) and thus the constraints
Jacobian (8) takes the following form

Jc =
[
Jc1 0 Jc3

]
. (26)

From (22), (23), (25) and (26), one can see, in this joints arrangement, the ankle yaw motion has
no direct influence on any of the active tasks. In consequence, the inverse kinematics solution
for the steering joints, at the singularity and in its proximity, yields zero velocity when there
is enough degree of redundancy to exclude singular joints; otherwise, it results in unbounded
velocity commands.

However, in contrary to standard all-steerable mobile robots, the kinematics of the
CENTAURO legged-wheeled platform cannot be considered truly non-holonomic in such
singular configuration. Articulated leg structure allows it to execute any pelvis/CoM motion

3 WHEELED MOTION 12
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regardless of wheels’ orientations. This motion may be provided without support polygon
modification via legged motion, or with adjusting the support polygon through legged and/or
driving motions [12]. However, in driving mode, workspace limitations heavily restrict the set
of reachable pelvis/CoM states, and eventually the system kinematics become non-holonomic
at the workspace edge.

One way to overcome this issue is to control the system in a way that it avoids stopping at
singularity throughout a motion; although, this approach would greatly restrict robot workspace.
Another approach is to consider the system to be always in singularity and solve the problem
through the second-order kinematic model extending methods developed for all-steerable
mobile robots (e.g. [41], [38]) as done in [42]. However, this approach also limits the
workspace, and can lead to an invalid model for a leg far from singularity. In addition, it leads
to a mixed velocity/acceleration state disturbing optimisation process for redundant systems.

3.2 Steering strategy
In this section, a strategy to coordinate the steering motion has been developed based on the
ICR concept, that expresses a geometric constraint on the system to move as a rigid body.

Considering the system moving on a flat ground, a standard way to define ICR is to express
it in a robot reference frame (X(r)

ICR) with respect to a desired pelvis velocity [8]

X
(r)
ICR =


ẋ
(g)
p sin

(
φ
(g)
r

)
− ẏ(g)p cos

(
φ
(g)
r

)
φ̇
(g)
r

ẋ
(g)
p cos

(
φ
(g)
r

)
+ ẏ

(g)
p sin

(
φ
(g)
r

)
φ̇
(g)
r

 (27)

where φ(g)
p denotes current pelvis heading.

However, if a desired angular velocity is zero, a modelling singularity emerges as the ICR
is placed at infinity. To overcome this issue, a few authors (e.g. [12, 38]) computed the steering
angle directly by solving the constraints for a mobile platform as

βi,des = arctan

(
− sin(φr)ẋr,des + cos(φr)ẏr,des + xciφ̇r,des

cos(φr)ẋr,des + sin(φr)ẏr,des + yciφ̇r,des

)
(28)

with Xci denoting coordinates of a ith contact point.
Note that (27) and (28) rely only on the pelvis planar motion even though the

legged-wheeled system can move in 3D. However, for non-planar motions, commanding the
system to move as a rigid body contradicts the ground contacts constraints, and therefore we
exploit the articulation of legs to compensate for the non-planar motions.

In case of legged-wheeled systems, the above equation does not fully represent the system
constraints, and additional components representing variations in the support polygon have to
be taken into account, thereby leading to a general solution

βi,des = arctan

f
(
q, Ẋr,des, φ̇r,des, Ẋci,des

)
g
(
q, Ẋr,des, φ̇r,des, Ẋci,des

)
 , (29)

as reported in [42]. When applying a steering reference obtained from the constraints directly
to the impedance controller at ankle yaw causes the support polygon to diverge when using the
first order inverse kinematics.

3 WHEELED MOTION 13
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Figure 9: Robot following a 2 m-radius-circular-trajectory with wheeled motion.

Nevertheless, (28) is a valid equation for legged-wheeled systems and generates the desired
wheel orientation for a robot moving with a fixed support polygon. Due to the redundant nature
of the CENTAURO robot kinematics, this equation does not have to be fulfilled at each time
instance to ensure tracking of the body/pelvis reference. Moreover, as it depends only on the
desired pelvis planar velocities and the current wheel position, any inaccuracy in tracking of the
computed reference will accumulate through the motion, thereby causing the support polygon
to diverge. To compensate for the accumulated errors, and to ensure the global stability of
the system, a regulation action on the wheel positions is added to the ICR steering strategy.
Furthermore, the wheels camber angles are kept at zero during the wheeled motion so that their
rotation axes are parallel to the ground, allowing for a continuous long-distant wheeled motion.
Finally, the same strategy can be used to modify the support polygon with respect to the pelvis
and in the world frame, regardless of the desired pelvis motion.

3.3 Results
The wheeled motion was tested on the CENTAURO simulator by commanding the robot to
follow a 2 m-radius-circular-trajectory. In this test, the pelvis desired velocity was gradually
increased, with a 0.1 rad/s step, from an initial value of 0.05 rad/s to a final value of 0.55 rad/s.
Figure 9 depicts the robot performing the aforesaid task in simulation, Fig. 10 illustrated the
desired and executed pelvis positions as well as the pelvis tracking error, and Fig. 11 presents
the wheels tracking errors. The bottom plot of the Fig. 10 and Fig. 11 demonstrate noticeable
step changes in tracking error, and are correlated with the desired velocity modifications.

3 WHEELED MOTION 14
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Figure 10: Pelvis desired and executed positions (upper plot) and pelvis tracking error (bottom
plot) for the system following a 2 m-radius-circular- trajectory with the wheeled motion.

(a) front left wheel (b) front right wheel (c) rear left wheel (d) rear right wheel

Figure 11: Wheel tracking error for system following the 2 m radius circle with the wheeled
motion.

3 WHEELED MOTION 15
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4 Conclusions
In this report we introduced the concept details of the balancing control and wheeled
locomotion approach for the CENTAURO robot. We presented the details of the
whol-body controller serving for the robot balancing relying upon regulation of the
COM position. The incorporation series elasticity into actuators are taking into account
for both gravity compensation and state regulation. The Wheeled locomotion control
scheme is carried out via steering strategies. It is based on the kinematics control of the
robot defining the reference trajectories for the COM controller performing the robot
balancing. This report presented an overview of the controllers, and finally, illustrate
the performance of the proposed scheme in executing balancing, and tracking various
locomotion trajectories through wheel motions.

4 CONCLUSIONS 16
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