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Executive Summary

This report is associated with D2.6 and presents developments within WP2 and in particular
those of Task 2.5 which focus on the legged locomotion control of the CENTAURO platform.
The report introduces the principles and approaches adopted to generate and modulate the
gait pattern of the quadruped robot, discusses their implementation on the actual platform and
presents experimental results from trials on the robot demonstrating the effectiveness of the
developed methods. More specifically, simultaneous center-of-mass and footstep optimization
is carried out inside a novel QP framework, which avoids bad local minima that are possible
under non-linear optimization frameworks.
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1 Introduction
The workpackage WP2 focuses on the development and experimentation of the CENTAURO
robot platform. To this end, the main targets of the workpackage are the design and fabrication
of the platform, as well as the development of walking and balancing strategies using both
the wheels and legs. Finally, the developed strategies will be experimentally validated on the
hardware.

In particular within WP2, Task T2.5 addresses the legged stepping motion control of
CENTAURO. This is achieved in two parts: first, the development of algorithms that drive
each foot of the robot to an appropriate Cartesian pose, which is defined at a higher level
control stage; second, the development of legged gait pattern generators, which guide the robot
center-of-mass (CoM) and feet along suitable trajectories that define a stable walking of the
robot.

This report describes the development of an omni-directional walking gait for a quadrupedal
robot, i.e. a coordinated motion of the robot legs satisfying the property that at least three
legs must always be on the ground. When tackling such a problem, it is important to notice
that legged robots are floating base systems, whose global motion can only be obtained by
means of contact forces exchanged with the environment. In turn, contact forces must fulfill
physical constraints, and consequently there exist motions that cannot be executed by a floating
base robot. Simplified models have been proposed in the literature to describe the set of
feasible motions in a way that is more suitable for the development of simple and fast planning
algorithms, such as the linear inverted pendulum model (LIPM) [6]; this simple model forms
the basis of many popular walking controllers.

The generation of a walking gait can be decomposed as the series of a footstep planning
stage followed by a center-of-mass (CoM) motion planning. This strategy is common among
the earliest approaches to legged locomotion, but it was shown [1] that, for the case of bipeds,
it is also possible to jointly generate both footsteps and CoM motion inside a QP framework,
gaining improved robustness and disturbance rejection capabilities [3]. On the contrary, in the
case of quadrupedal walking, joint optimization over both CoM motion and footsteps gives rise
to non-linear constraints, which make the optimization problem more difficult and less efficient
to solve.

In order to retain the advantages of both a joint optimization strategy and a QP formulation,
a novel decomposition is proposed that does not introduce non-linear constraints, by introducing
auxiliary states and control inputs that are subject to linear constraints. In this way, we
formulate an approximate optimization problem that can be exactly solved. It is also worth
noticing that, since footholds are decision variables inside the proposed QP, they can be given
some target values from higher level planning stages.

Finally, the proposed approach is validated on the Centauro robot.

2 Stability of Legged Robots
The main difficulty that the walking gait designer must face derives from the fact that legged
robots are underactuated: global motion cannot be directly achieved by their actuated degrees
of freedom; instead, it must be generated by contact forces exchanged with the environment.

2 STABILITY OF LEGGED ROBOTS 5
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This intuition is beautifully summarized by the following centroidal dynamics equation 1

M p̈com =
N∑
i=1

Fi +Mg

L̇ =
N∑
i=1

(pi − pcom)× Fi,

(1)

where M is the system mass, pcom ∈ R3 is the robot CoM position, Fi ∈ R3 is the i-th contact
force, N is the number of contacts, g ∈ R3 is the gravity acceleration, L ∈ R3 is the robot
angular momentum, and pi ∈ R3 is the i-th contact point. It is remarkably important to notice
that these contact forces are constrained, and consequently there exist CoM trajectories that
cannot be executed by a legged robot. The most important constraint is commonly recognized
[10] as the unilateral constraint, which takes the following form:

nT
i Fi ≥ 0 ∀i ∈ {1, . . . , N} (2)

where ni ∈ R3 is the outward normal of the i-th contact surface. Broadly speaking, this
means that the robot can only push on the ground. Assuming coplanar contacts (and, for
simplicity, n = [0 0 1]T ) and rearranging equations (1) and (2) as in [5], the equivalent
centroidal momentum constraint can be obtained as follows:

z ∈ ConvHull{pi}Ni=1

z =

[
pcom −

h

g + ḧ
p̈com +

n× L̇

Mg +Mḧ

]
x,y

,
(3)

where z ∈ R2 is commonly referred to as the Zero Moment Point (ZMP). Neglecting variations
in the robot CoM height h and angular momentum, (3) gives rise to the popular cart-table model
[6]:

z ∈ ConvHull{pi}Ni=1

z =

[
pcom −

p̈com

ω2

]
x,y

,
(4)

with ω =
√

g
h

representing a parameter that characterizes the influence of the CoM acceleration
on the ZMP position. Notice how, according to such a simplified model, the feasibility of a
CoM trajectory only depends on whether a linear combination of the CoM derivatives belongs
to some convex set.

As a concluding remark, if condition (4) is satisfied together with its characterizing
assumptions, the robot feet will not lose contact with the ground; with the further assumptions
that the joint CoM-foot motion does not violate the robot kinematic constraints, this means that
the planned walking motion can be executed successfully on the real platform.

3 Walking Pattern Generation
If we can assume the set of contact points to be given in advance (e.g. by some footstep planning
stage), then we can follow [12], [9] and cast the walking gait generation problem into a linear
MPC problem, as it is briefly summarized hereafter.

1Notice that we neglect any torque exchanged with the ground, which is equivalent to assuming point contacts.

3 WALKING PATTERN GENERATION 6
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We first specify our process dynamics as a triple integrator of the CoM jerk, as follows:

ẋ = Ax +B u, (5)

where x ∈ R6 is the state vector defined by the aggregation of the planar CoM position,
velocity and acceleration, and u ∈ R2 is the control input (which corresponds to the CoM jerk).
Consequently, A ∈ R6×6 and B ∈ R6×2 take the following form:

A =

02×2 I2×2 02×2

02×2 02×2 I2×2

02×2 02×2 02×2


B =

02×2

02×2

I2×2

 .
(6)

The ZMP can be defined as an output z ∈ R2 of (5):

z = Czmp x; (7)

the definition of Czmp follows from (4):

Czmp =
[
I2×2 02×2 − 1

ω
I2×2

]
. (8)

Finally, we assume piece-wise constant control input over some control horizon

u(t) = uk ∀t ∈ [tk, tk+1] , k ∈ {0, . . . ,M − 1}, (9)

where tk is the k-th discretization knot, and M denotes the control horizon length (a fixed
discretization step ∆t has been used hereafter). From standard theory of linear systems we
know that the ZMP (as well as any other output) at time tk depends linearly on both the initial
state x0 = x(t0) and the sequence of controls U ∈ R2M , as specified below:

zk = C̃k
zmp x0 + D̃k

zmp U (10)

with

U =

 u0
...

uM−1

 ; (11)

the matrices C̃k
zmp and D̃k

zmp are obtained from integration of (5) over the knots (9).
The ZMP can then be constrained to the convex hull of the contact points over the whole

control horizon. Indeed, the feasibility constraint (4) can be written as a linear inequality of the
following form [

(pj(i),k − pi,k)× (zk − pi,k)
]
z
≤ 0 (12)

for each time step k over the control horizon, and for each support polygon side (i, j(i)), where
j(i) denotes the subsequent of the i-th foot, according to a clockwise ordering2. The resulting

2As it is customary in the literature, we assign integer labels to the four legs according to a clock-wise ordering
and starting from the front-left leg.

3 WALKING PATTERN GENERATION 7
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optimization problem takes the form

min
U

1
2

M∑
k=1

xT
k Qk xk + uT

k Rk uk

s.t. Azmp(P )U ≤ bzmp(P ,x0),

(13)

where Azmp and bzmp account for (12) when evaluated over all support polygons sides and over
the control horizon as well. Such matrices depend on the current and future footsteps, which
are collected in the vector P ∈ R2·(1+MP )·4, with MP representing the number of predicted
footsteps.

Notice that, if we do not optimize over the footsteps pi, the constraint (12) is linear; on
the contrary, if we want to include the footsteps inside the optimization process, non-linearities
arise in the form of quadratic constraints. Moreover, such a constraint becomes non-convex
(see the appendix for a simple proof), resulting in an NP-hard problem. Even though several
algorithms exist that allow to find a (local) minimizer of such a problem, it is the authors’ belief
that finding a linearly constrained QP approximation of the full problem would be beneficial for
at least two reasons:

• QPs are a standard class of optimization problems that are well-known in the scientific
community; global minimizers can be quickly computed by means of off-the-shelf solvers
(e.g. [2]). General-purpose NLP solvers, on the other hand, can be expected to be
significantly slower.

• NLP solvers can only provide local minima of non-convex problems. It can be argued
that the risk of converging to a “bad” local minimum may ruin the planner performance.

The remainder of this section is devoted to the development of such a QP approximation, that
is the main contribution of the present work.

3.1 Proposed Decomposition
As it was mentioned in the previous subsection, our goal is to derive a QP approximation of
problem (13) when optimizing for both ZMP and footsteps. More specifically, the approximated
feasible set should be a linear subset of the complete set (12), so that a solution to the
approximated QP will also be a feasible point for the original problem.

To this aim, we observe that the nonlinearity in (12) originates from the coupling between
stance feet pairs. Indeed, also in the case of bipedal walking, the authors of [3] noticed how
nonlinearities arise whenever more than one stance foot is considered. With this in mind, we
propose to split the set of the feet indices I = {1, 2, 3, 4} into two partitions of two indices
each, IA and IB. Correspondingly, we introduce two auxiliary states xA ∈ R6 and xB ∈ R6,
such that the full robot state x is given by a convex combination of the two auxiliary states:

x = αxA + (1− α)xB (14)

for some parameter α ∈ (0 1), that we call distribution factor. In addition, we also define
auxiliary control inputs uA ∈ R2 and uB ∈ R2 such that an analogous relation as (14) holds for
the same value of α:

u = αuA + (1− α)uB. (15)

3 WALKING PATTERN GENERATION 8
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Following these definitions, we can define an auxiliary system whose state x̃ ∈ R12 and input
ũ ∈ R4 are given by the concatenation of the two auxiliary states and inputs:

x̃ =

[
xA

xB

]
, ũ =

[
uA

uB

]
. (16)

Clearly, the auxiliary dynamics
˙̃x = Ã x̃ + B̃ ũ (17)

is described by the following matrices:

Ã =

[
A 06×6

06×6 A

]
, B̃ =

[
B

B

]
. (18)

The robot state x can then be recovered as an output for system (17), as it is shown below:

x = Cstate x̃ (19)

Cstate =
[
α I6×6 (1− α) I6×6

]
. (20)

Likewise, we can define outputs corresponding to the auxiliary ZMPs zA and zB by considering
(4) for the auxiliary states xA and xB, respectively.

3.2 Feasibility Constraint
To generate linear constraints, we notice that the two auxiliary states, together with the
corresponding footsteps, define two equivalent bipeds. Drawing from [3], we can define
biped-like feasibility constraints for both auxiliary systems, enforcing the two auxiliary ZMPs
to lie inside the corresponding biped supports. Finally, we notice that the full quadruped support
is given by the convex hull of the two equivalent bipeds supports, according to the following
expression:

z = α zA + (1− α) zB; (21)

consequently, as the global ZMP is given by a convex combination of the auxiliary ZMPs, it
will lie inside the full polygon. An illustration of this is given by Figure 1.

To obtain a numerically stable QP, we set the equivalent bipeds feet size to a small (but not
zero) δp ∈ R2.

3.3 Auxiliary State Initialization
It is worth noticing that, having introduced new auxiliary states in our dynamics, we do not
have an observable system anymore; broadly speaking, this means that the full state (16) cannot
be reconstructed from the measured output, which we assume to be the robot state x defined
by (19). As a consequence, it is impossible to compute (or estimate) in a meaningful way the
initial value of the auxiliary state x̃, which is needed at each control time by the MPC algorithm.
However, since auxiliary sub-states do not carry any physical meaning, we are free to choose
the corresponding value arbitrarily, as long as the following equality holds true:

x0 = Cstate x̃0, (22)

i.e. the initial robot state matches the measured one. Finally, we notice how the initial auxiliary
state appears linearly in both the cost function and the constraints of the LMPC problem; hence,
we can let the solver determine an optimal value for x̃0 by introducing it as decision variable,
and enforcing (22) as a constraint.

3 WALKING PATTERN GENERATION 9
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A

B

Figure 1: Decomposed feasibility constraint as described in Section 3.2. Auxiliary ZMPs are
shown as colored circles for both system A (blue) and B (purple). The resulting global ZMP
(green) is inside the support polygon.

3.4 Parameters Choice
To implement our decomposition, we first need to choose a partitioning IA, IB. To this aim,
we notice that the quality of velocity tracking along different directions will differ, depending
on the specific choice. More specifically, a front-back partitioning (IA = {1, 2}, IB = {3, 4})
will privilege forward walking, while a left-right partitioning (IA = {1, 4}, IB = {2, 3}) will
favor lateral walking. This is explained as follows: in the first scenario, the supports of the two
systems have the possibility to overlap along the forward direction, whereas they are always
disjointed along the lateral direction. Consequently, the ZMP trajectory can be continuous along
the forward axis, while it is always discontinuous along the vertical axis, causing oscillations
that are well known in the literature. For a left-right partitioning, the vice-versa happens instead.

Concerning the role of the distribution factor α, it intuitively controls how much of the robot
weight is supported by the auxiliary systems A and B, i.e. their relative load distribution.

Throughout the rest of this report we employ a front-back partitioning, while the distribution
factor is fixed at α = 1

2
.

4 Implementation Details
The proposed algorithm was implemented in C++ inside the OpenSoT framework [4], that
mainly targets hierarchical QP optimization problems with constraints, decoupling the concepts
of front-end, i.e. the interface that allows to formulate the optimization problem, from the
back-end, i.e. the tool that is actually used to solve it. More specifically, the front end allows to
combine tasks and constraints in a natural way by overloading suitable operators. The back-end
implementation that was used in our work was powered by the qpOASES [2] solver. The
following tasks and constraints were implemented:

• tracking of a CoM velocity reference vref:

Jvel(U , x̃0) =
M∑
k=1

‖ṗcom,k − vref‖2 ; (23)

4 IMPLEMENTATION DETAILS 10
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• a footstep regularization task, which tries to bias the feet positions to the center of the
respective workspaces p̄j , for each foot j belonging to the set of stance feet at time k,
denoted by Sk:

Jfootstep(U ,P , x̃0) =
M∑
k=1

∑
j∈Sk

‖pj,k − pcom,k − p̄j‖2 ; (24)

• minimum CoM acceleration and jerk tasks, as follows:

Jacc(U , x̃0) =
M∑
k=1

‖p̈com,k‖2

Jjerk(U , x̃0) =
M∑
k=1

‖uk‖2 ;

(25)

• feasibility constraint (for the single auxiliary states), as described in Section 3.2;

• footspan constraint, whose aim is to ensure that the relative position of the feet lies
between some lower and upper bound:

∆pi,jmin ≤ pi,k − pj(i),k ≤ ∆pi,jmax ∀i ∈ Sk; (26)

in (26) j(i) ∈ Sk denotes the index of the leg adjacent to leg i, according to a clockwise
ordering.

• Initial state consistency constraint (22).

The final objective function was obtained as a weighted sum of the atomic tasks that were listed
above.

5 Experimental Results
We test our walking pattern generator on the Centauro robot, which is powered by our control
framework XBotCore [8]. XBotCore allows us to control the robot under hard real-time (RT)
constraints, while offering at the same time a complete interface to non-RT (NRT) external
processes. We command a piece-wise constant velocity reference for the CoM, both in the
forward and lateral direction. The gait pattern is dynamically computed as a function of the
velocity reference according to [7], in order to maximize the static stability margin, using a
fixed stride time T and duty cycle β. We tune the parameters as in Table 1, trying to balance
tracking performance while avoiding excessive stretching of the legs. The resulting optimization
problem has nV = 108 decision variables and nC = 208 constraints, which leads to roughly
50 Hz average execution frequency (see Fig. 3), which is more than three times faster when
compared to [11].

However, it should be noted that our implementation does not take advantage of the sparsity
pattern, as it does not exploit the fact that the hessian of the objective function is actually
constant and does not need to be recomputed and re-factorized at each iteration.

To transfer the planned motion to the robot, we adopt a simple inverse kinematics (IK)
scheme. Once again, we leverage the OpenSoT framework to write a hierarchical IK problem
with the following priorities:

5 EXPERIMENTAL RESULTS 11
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Table 1: Parameters used for the experiment.

Parameter Value Parameter Value

M 20 wacc 1
MP 2 wvel, x 100
∆t 0.05 s wvel, y 1000
δpx,y 0.05 m wfootsteps 1000
∆p1,2min, ∆p4,3min [−0.3, 0.3] m ∆p2,3min, ∆p1,4min [0.6, −0.2] m
∆p1,2max, ∆p4,3max [0.3, 0.7] m ∆p2,3max, ∆p1,4max [1.2, 0.2] m
T 3.0 s β 0.8
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c
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CoM velocity (X), filtered

CoM velocity (Y), filtered

CoM velocity (X), raw

CoM velocity (Y), raw

CoM velocity reference (X)

CoM velocity reference (Y)

Figure 2: Planned CoM velocity profile (solid) against reference (dash). Data were processed
through zero-phase low-pass filtering with cutoff frequency fc = 0.2 Hz. Raw data are
represented in grey.

1. CoM task + Feet position task

2. Knee task + Waist orientation task + Postural task,

where the aim of the knee task is to avoid the collision of the robot knees. Moreover, joint
position and velocity limits are enforced as constraints. We assign a low weight to the waist
orientation task, so that natural rotations arise from the minimization of joint velocities given
by the postural task. From the software architecture point of view, the IK runs inside the RT
loop at 1 kHz frequency, while the motion planning runs on a NRT ROS node.

Figure 4 and 2 show the achievable tracking performance. It can be noticed that, as discussed
in Section 3.4, the forward velocity is tracked smoothly and precisely; on the contrary, lateral
velocity is tracked only on average, and with greater steady-state error. Indeed, this behavior
is inherited from the approach of [3], that the present work aims to extend to the quadrupedal
case. Finally, it can be visually checked from Figure 5 that the proposed method does indeed
generate a ZMP which is always inside the support polygon, therefore resulting in a feasible

5 EXPERIMENTAL RESULTS 12
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Figure 3: CPU time needed to fully set up and solve with a naive implementation the MPC QP
problem on an Intel i7-6700@3400Hz CPU.
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Figure 4: Planned CoM and ZMP trajectories without any external disturbance (colored lines),
and with an external impulsive force F = 60 N applied in the negative y direction for 0.3 s
(grey lines). For reference, the robot mass is roughly 90 kg.

motion.
We also tested the disturbance rejection capabilities of our method, by simulating an external

impulsive force that is applied while the robot is walking. As it can be seen in Figure 4 (grey
lines), the CoM plan deviates in the same direction of the force, in order to absorb the impact,
while at the same time adapting the footsteps as well.

The outcome of our experiment is summarized in Fig. 6, and in the accompanying video as
well.

5 EXPERIMENTAL RESULTS 13
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Figure 5: Sequence of support polygons generated by the proposed algorithm. The ZMP
trajectory is plotted as well, with a color that matches the corresponding polygon (grey
corresponds to four-stance phases).

Figure 6: Snapshots taken from an experiment on the actual Centauro robot. For the sake of
clarity, the final backward phase is not included.
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6 Conclusions
This deliverable presented the first walking pattern generator fully integrated with the Centauro
robot. Joint optimization of both the CoM trajectory and the footsteps is carried out, in
order to gain robustness over fixed footsteps approaches, as discussed in [3], enforcing the
ZMP to always lie inside the pre-planned supports could require excessive CoM motions (or
be unfeasible altogether). Besides, differently from the work of [11] which allows to find
local minimizers of a non-convex optimization problem, we propose to find the exact global
minimizer of an approximated QP problem. Such an approximation leads to the loss of some
feasible solutions, and to an increased number of decision variables, which indeed represent
drawbacks of our formulation; on the other hand, we eliminate the risk of computing a bad
local minimum for a the original non-linear program. In addition, we achieve a significantly
faster computation time when compared to [11] even with a naive, dense implementation.

Our first trials on CENTAURO have shown promising results. A mixed forward-lateral-back-
ward gait was transferred to the actual hardware with little parameter tuning.

6 CONCLUSIONS 15
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