
The EU Framework Programme for Research and Innovation H2020
Research and Innovation Action

Deliverable D5.3 CENTAURO Driving Navigation

Dissemination Level: Public

Project acronym: CENTAURO

Project full title: Robust Mobility and Dexterous Manipulation in Disaster Response
by Fullbody Telepresence in a Centaur-like Robot

Grant agreement no.: 644839

Lead beneficiary: KTH – Kungliga Tekniska Hoegskolan

Authors: T. Klamt, P. Jensfelt, X. Chen, K. Nordberg, D. Droeschel

Work package: WP5 Navigation

Date of preparation: 2017-12-15

Type: Report

Version number: 1.1

CENTAURO – 644839 D5.3 Driving Navigation

Document History

Version Date Author Description
0.1 2017-08-12 TK First draft
0.2 2017-09-22 PJ Extended introduction, added executive

summary and additional work section
0.3 2017-09-23 TK Added missing parts
0.4 2017-09-24 PJ Added GCN section (A.2)
0.5 2017-09-26 KN Added A.1 and A.3
0.6 2017-09-28 PJ & XC Added future work section
0.7 2017-10-14 PJ Fixed typos. Moved future work section

into an additional work section. Changed
from Attachment X to Additional work X
to also be able to include work where there
is no paper attached.

0.8 2017-10-31 PJ New version of future work.
0.9 2017-11-01 XC Additional work 4 added with description

of DRL planner approach.
0.9.1 2017-12-14 TK Add subsection 5.3 to describe experi-

ments with the real robot
0.9.2 2017-12-15 TK Add subsection 5.2 to describe terrain clas-

sification with the real robot
1.0 Submitted version.
1.1 DD Add missing section 5.1

2

CENTAURO – 644839 D5.3 Driving Navigation

Executive Summary

This deliverable describes our approach to locomotion planning and navigation, one of the core
components in the CENTAURO system. The Centauro robot stands out compared to most
other mobile robots in that it can both drive and walk. We have developed a framework that
exploits both of these modes. This deliverable describes this system in detail. We also present
some ongoing and future work. We include additional work performed in Workpackage 5 in
appendices.

3

CENTAURO – 644839 D5.3 Driving Navigation

Contents

1 Introduction 5

2 Related Work 6

3 Method 8

4 Evaluation 22

5 WP5 on the CENTAURO Robot 28

6 Future Work 31

A Additional Work in Workpackage 5 32

4

CENTAURO – 644839 D5.3 Driving Navigation

1 Introduction
This deliverable, ”D5.3 CENTAURO Driving Navigation”, reports on the design of the navi-
gation planning system used in the CENTAURO project, an unmanned robot which supports
two locomotion modalities: driving and walking. Since our locomotion planning approach
combines driving and stepping planning in a single approach, we present planning for both lo-
comotion types in this deliverable, even though the title suggest that it would be only about
driving. The main part of this deliverable is an extended version of [17].

The rest of the deliverable is structured as follows. Section 2 provides related work loco-
motion planning. Section 3 describes our method which relies on a multi-level spatial represen-
tation. Section 4 presents an evaluation of the suggested method. Finally, Section 6 presents
ongoing and future work on navigation. To show the overall progress in Workpackage 5, there
are a number of appendices with additional work connected to the workpackage, but not directly
related to the specifics of the Driving Navigation.

An overview of the components and functionality in the CENTAURO project related to
navigation can be seen in Figure 1. The planning component is at the center of this. It needs
input in the form of a 2D height map, terrain class map, the goal pose and the robot state. The
2D height map is calculated from a 3D point-cloud map generated from the 3D rotating laser
scanner. The 2D height map and terrain class map are used to calculate the costs for the planner.

Figure 1: An overview of the components and functionality in WP5.

1 INTRODUCTION 5

CENTAURO – 644839 D5.3 Driving Navigation

2 Related Work
Many works address path planning in unstructured terrain. The considered systems provide
either purely wheeled/tracked locomotion or are able to traverse terrain by walking. Planning
is often done with either grid-based searches, such as A* [11], or sampling-based approaches,
such as RRT [21]. Despite the application of similar planning methods, these two locomotion
modes differ in many aspects. Since planning on large maps and with many degrees of freedom
(DoF) slows down path generation, there are different approaches facing this problem.

2.1 Driving Locomotion Planning
Driving is fast and energy efficient on sufficiently flat terrain, which makes it suitable for travers-
ing longer distances. When supported by three or more wheels, the robot is generally statically
stable. Planning of drivable paths in unstructured environments is heavily dependent on the
DoF of the platform. Simple robot designs offer longitudinal and rotational movements with
a constant robot shape [6], [14]. For search and rescue scenarios, some robots were extended
by tracked flippers [5], [25], [3]. These allow the robots to climb stairs and thus increase capa-
bilities but also planning complexity due to additional shape shifting DoFs. Flipper positions
are often not considered by the initial navigation path planning and are adjusted to the terrain
in a second planning step. Platforms which offer omnidirectional locomotion increase the path
planning search space by another dimension [49]. Driving is restricted, however, by terrain
characteristics such as height differences and slopes which makes it unsuitable for very rough
terrain and for overcoming obstacles.

2.2 Walking Locomotion Planning
Legged locomotion is capable of traversing more difficult terrain since it only requires isolated
feasible footholds. The drawback of this locomotion mode is, that motion planning is much
more complex. Since legs are lifted from the ground repeatedly, the robot also has to constantly
ensure that it remains stable. Due to the high motion complexity of stepping, path planning is
often performed in at least two hierarchical levels [16], [42], [30]. A coarse planning algorithm
identifies feasible footholds or areas for feasible steps. Detailed motion planning is done in a
second step to connect these footholds. Navigation towards the goal is either included in the
coarse planning or realized in a higher-level planner.

2.3 Increasing Planning Performance
Planning performance is strongly dependent on the number of DoF and the path length. There
exist different approaches to increase planning performance by introducing suboptimality.

One group of approaches accelerates planning by extending the search algorithm itself.
A* is often extended with anytime characteristics such as done in Anytime Repairing A*
(ARA*) [23]. Search is accelerated by giving the heuristic a weight > 1. An initial search
provides solutions with bounded suboptimality quickly. The result quality is then improved by
decreasing the heuristic weight stepwise down to 1, if the given planning time is not exhausted
yet. ARA* recycles the search space representations, it generated previously, to accelerate re-
planning.

Another group of approaches applies multiresolution characteristics to the planning method.
A high resolution environment representation and high resolution planning is only applied in

2 RELATED WORK 6

CENTAURO – 644839 D5.3 Driving Navigation

regions of special interest. Behnke [1] proposed a general concept for A*-based multiresolution
planning with a decreasing resolution with increasing distance to the robot. González-Sieira
et al. [8] apply high resolution in areas of high environment complexity. Resolution decreases
with increasing distance to these areas. Bohlin [2] generates an initial plan in a coarse resolution
first and refines this plan into a finer resolution. Since high resolution planning is only applied
to parts of the map, the search space decreases and planning performance increases, compared
to pure high resolution planning. One of the main challenges in multiresolutional approaches
is the definition of feasible transitions between the different resolutions. All of the presented
approaches face the problem that a coarse resolution representation neglects information and
thus is not capable of representing challenging terrain features in sufficient detail which might
lead to wrong or bad plans.

Planning for systems with high-dimensional motion flexibility quickly reaches its limits
for larger environments since the search space grows exponentially. Similar to multiresolu-
tion planning, several approaches utilize multiple representations with different planning di-
mensionalities to decrease planning complexity. Kohrt et al. [18] generate an initial plan in a
low-dimensional search space and replan in the high-dimensional search space by only consid-
ering those states that are part of the low-dimensional plan. Gochev et al. [7] plan a path in
a low-dimensional search space and only switch to high-dimensional planning in those areas
where low-dimensional planning cannot find a solution. Similar, Zhang et al. [46] plan in 2D
and switch to high-dimensional planning in the robot vicinity and at key points. Similar to mul-
tiresolution planning, planning with multiple robot configuration dimensionalities might lead to
wrong or bad plans, since a low-dimensional robot representation might estimate challenging
situations wrongly.

To achieve further planning acceleration, it is an obvious idea to combine multiresolution
and multidimensional planning. However, only few works, such as by Petereit et al. [31] address
this. Different planning dimensionalities and resolutions are applied by using different sets
of motion primitives. A fine resolution is only considered close to the start and goal pose
and close to obstacles. A high planning dimensionality is considered for states which will be
reached within a given time interval. This allows the planner to provide detailed plans close
to the robot while planning times stay feasible. The drawbacks of both, multiresolutional and
multidimensional planning also count for this work.

2 RELATED WORK 7

CENTAURO – 644839 D5.3 Driving Navigation

3 Method
We present a search based planning approach which combines driving and stepping in a single
planner. Steps are generated in a hierarchical manor. The planner utilizes three levels of rep-
resentation which vary in the planning resolution and dimensionality. Coarser planning comes
along with a loss of information which we compensate by adding semantics to the planning
scene. Furthermore, we compare different heuristics and improve planning performance by
introducing an orientation cost term and applying anytime characteristics.

3.1 Approach
The Centauro robot design does not only allow driving and walking locomotion separately
but enables new motions which are neither possible with pure driving nor with pure walking
robots. One of these motions is the ability to change the configuration of ground contact points
(which we will refer to as the robot footprint) under load without lifting a foot, as Figure 2
demonstrates. This enables motion sequences for stepping with large stability margins. Since
we want to benefit from those unique capabilities, we combine driving and stepping locomotion
planning in a single planner instead of planning both locomotion types separately.

Figure 2: The unique Centauro robot design allows motions which are neither possible with
pure driving nor with pure walking robots. One of these motions is to change the robot footprint
without lifting a foot, as demonstrated with Momaro.

Hybrid driving-stepping locomotion planning is realized through an A* search. The planner
chooses driving mode whenever possible and takes into account the detailed robot footprint. If
steps are required, the planner includes those. The required map resolution and planning reso-
lution is high to place steps reliably and manoeuvre through cluttered terrain safely. Moreover,
our platform provides omnidirectional driving and individual leg movement which results in a
high number of DoF which also have to be considered in the planner. Both, a high resolution
and a high number of DoF, have a huge impact on the planning performance. We face this
problem with multiple ideas.

To reduce the number of DoF during path search, we split step planning into two hierarchical
levels. During planning we consider abstract steps. We define abstract steps to be the direct
transition from a pre-stepping pose to an after-stepping pose. An abstract step does not describe
the detailed motion sequence to perform such a step and needs to be expanded to be stable and
executable by the robot. Only those abstract steps which are part of the result path are expanded
to detailed motion sequences. Moreover, we neglect the height of individual feet. This is also
computed only for those poses that are part of the result path. An overview over the planner
architecture is given in Figure 3.

3 METHOD 8

CENTAURO – 644839 D5.3 Driving Navigation

Figure 3: Hybrid locomotion system structure: The hybrid path planner searches an abstract
path from start to goal pose. The step motion generator expands this abstract path to a detailed
path which can be executed by the robot. A neighbour client provides neighbour states to the
planner. Both, this neighbour client and the step motion generator, request pose costs from the
cost client which generates costs out of the 2D height map. The resulting path is executed by a
controller.

As described before, the required resolution and number of planning dimensions are high to
provide save and feasible path. However, this only applies for regions close to the robot position.
For regions with larger distance to the robot, planning can be done on coarser resolutions with
less dimensions. This is reasonable, since those parts of the plan are reached in the further
future and thus are more uncertain. Those plan segments can become more detailed when the
robot gets there. Moreover, sensor measurements become less precise with increasing distance
to the robot.

The environment and the robot are described in three different levels of representation with
different sizes. In the vicinity of the robot, we use a fine resolution and a high robot configura-
tion dimensionality for planning. We call this Level 1 representation. With increasing distance
to the current robot position, the environment and the robot are represented on higher levels with
a coarser resolution and a robot representation with lower dimensionality. At the same time, we
compensate this loss of detail by enriching the environment representation with additional fea-
tures, which increase the understanding of the situation. Higher levels of representation can be
derived from lower levels of representation. The approach is visualized in Figure 4. Level sizes
and positions are shown in Figure 5. For a planning task, the planner only performs a single
planning run while including all three levels of representation. Hence, it is important that the
same action carries the same costs in different levels of representation to make planning con-
sistent over all levels. Moreover, the transition between the different levels of representation is
challenging. All levels of representation are described in detail in the next subsections.

Basis to the planning is a suitable environment model. To consider the robot footprint, we
distinguish between foot costs and body costs and combine those to pose costs as described in
CENTAURO Deliverable 5.2. The generation of these costs varies between the different levels
of representation and is described for each level individually. The same applies to the robot
representation and the set of feasible robot actions at each position.

3 METHOD 9

CENTAURO – 644839 D5.3 Driving Navigation

Figure 4: The planner includes three levels of representation with decreasing resolution and
robot configuration dimensionality. To compensate the loss of information, the semantics for
both the environment representation and the robot state increase.

Figure 5: Size and position of the different levels of representation. Level 1 covers the vicinity
of the robot. Level 2 is also robot centered and medium sized. Level 3 covers the whole map.

3.2 Level 1 Representation
Representation Level 1 is based on the approach which we presented in our previous work [17].
Input is a height map with a resolution of 2.5 cm. We derive local unsigned height differences
between neighbour cells from this height map to generate foot costs. Base costs are derived
from the height map itself. The detailed generation of these costs is described in CENTAURO
Deliverable D5.2. A height map and the derived foot costs can be seen in Figure 6.

In this level of representation, a robot pose ~r = (~rb, f1, ..., f4) is represented through the
robot base configuration ~rb = (rx, ry, rθ) with its center position rx, ry and orientation rθ and
the individual longitudinal foot positions f1, ..., f4. At each position, the robot can have 64
different discrete orientations.

Figure 6: Overview over representation level 1. a) Input to the planner is a height map, showing
a corridor with walls at the left and right, a staircase with four steps and two cuboid obstacles.
Olive areas are unknown. b) Foot cost map. Yellow areas are not traversable by driving.

Path planning is realized through an A*-search on a pose grid. Feasible driving neighbour
poses can be found within a 16-position-neighbourhood and by turning on the spot to the next

3 METHOD 10

CENTAURO – 644839 D5.3 Driving Navigation

discrete orientation, as shown in Figure 7.

Figure 7: Driving locomotion neighbour states can either be found by straight moves with fixed
orientation within a 16-position-neighbourhood (l.) or by orientation changes on a fixed position
(r.). Grid and orientation resolution are enlarged for better visualization.

As illustrated in Figure 8, additional stepping manoeuvres are added, if a foot ~fj is

• close to an obstacle
(
∃c ∈ map

(
CF(c) =∞∧

∥∥∥c− ~fj

∥∥∥ < 0.1 m
))

,

• a feasible foothold ch with CF(ch) <∞ can be found in front of the foot in its sagittal
plane that respects a maximum leg length,

• the height difference to the foothold is small (|H(~fj)−H(ch)| ≤ 0.3m), and

• the distance between the two feet on the “non-stepping” robot side is> 0.5 m to guarantee
a safe stand while stepping.

A step is represented as an additional possible neighbouring pose for the planner.

Figure 8: Criteria to add steps to the hybrid planner: a) A foot is close to an obstacle, b) a
feasible foothold can be found, c) the height difference to overcome is ≤ 0.3 m and d) the
distance between the feet on the “non-stepping” robot side is > 0.5 m. Grey areas show an
elevated platform.

The step which is considered by the planner at this level is an abstract step which is only
expanded to a detailed motion sequence if it is part of the result path. An abstract step is
visualized in Figure 9a.

Each step is assigned a cost value

CS = k7 · Lstep + k8 · (CF (ch)− 1) + k9 · 4Hstep, (1)

where k7 = 0.5, k8 = 0.1 and k9 = 2.3 which includes the step length Lstep, the foot specific
terrain difficulty costs of the foothold to step in ch, and the maximum height difference4Hstep.
If multiple end positions for a step exist, only the cheapest solution is returned to the search
algorithm.

Further manoeuvres are required to navigate in cluttered environments. We define the foot-
print shown in Figure 8a to be the neutral footprint. It provides high robot stability at a small
footprint size, and is the preferred configuration for driving.

3 METHOD 11

CENTAURO – 644839 D5.3 Driving Navigation

If both front feet are positioned in front of their neutral position, the robot may perform a
longitudinal base shift manoeuvre. The base is shifted forward relatively to the feet until one of
the front feet reaches its neutral position or a maximum leg length is reached for one of the rear
legs (see Figure 9b). Base shifts of length LBS using the average discovered base costs CB,avg

and k10 = 0.5 carry the cost
CBS = k10 · LBS · CB,avg. (2)

If a rear foot is close to an obstacle, the pair of wheels at each front foot may be driven
forward while keeping ground contact (Figure 9c) which is a preparation for a rear foot step. If
the robot footprint is not neutral, it may drive a single pair of wheels to their neutral position
(Figure 9d). A single foot movement of length LFM using the average discovered foot costs
CF,avg and k11 = 0.125 carries the cost

CFM = k11 · LFM · CF,avg. (3)

Figure 9: Manoeuvres which extend the driving planner to a hybrid locomotion planner, visu-
alized on a height map: a) Abstract steps, b) longitudinal base shifts, c) driving a pair of wheels
at one front foot forward, and d) driving a pair of wheels at any foot back to its neutral position.

Since driving is faster and safer than stepping, we want the planner to consider drivable
detours of acceptable length instead of including steps in the plan. We define that, when the
robot stands in front of an 0.2 m elevated platform, it should prefer a 1.5 m long detour over a
ramp instead of stepping up to this platform (Figure 10). This can be achieved by increasing the
costs of stepping-related manoeuvres by a certain factor.

Figure 10: Step-related manoeuvre costs are weighted such that the planner just prefers taking
a 1.5 m detour over a ramp (blue path) instead of stepping up (red path) to an elevated platform.

3 METHOD 12

CENTAURO – 644839 D5.3 Driving Navigation

3.3 Level 2 Representation
We use the height map with a resolution of 2.5 cm to compute the Level 2 representation con-
sisting of a height map and a height difference map with a resolution of 5 cm. According to
the Nyquist-Shannon sampling theorem, subsampling has to come along with smoothing. To
satisfy this theorem, we subsample the Level 1 height map as shown in Figure 11. Each Level 2
height value is computed from the normalized, weighted sum of a 4×4-region of Level 1 height
values (see Figure 11 a). We use a binomial distribution for weighing (see Figure 11 b). A
Level 2 map of height differences is generated in the same manner. We generate a Level 1
height difference map by computing local height differences on the Level 1 height map. The
Level 1 height difference map is then subsampled to a Level 2 height difference map. A Level 2
height map and height difference map are shown in Figure 12.

Figure 11: Subsampling method: a) For a Level 2 cell (red square) a 4×4-window (blue square)
of Level 1 cells is considered. b) Normalized binomial distribution to weigh heights and height
differences.

Figure 12: Level 2: a) height map, b) height difference map, c) foot cost map.

We use the generated Level 2 height and height difference input to compute foot and body
costs as described for representation Level 1. Body cost computation is similar since it only
relies on height information. Foot costs rely on height differences. Since we generate these by
accumulating height differences of a larger neighbourhood, Level 2 height difference values are
in general lower but spread over a larger area than Level 1 height differences. Consequently we
adapt the parametrization to achieve feasible foot costs. A Level 2 height map, height difference
map and foot cost map can be seen in Figure 12.

To decrease the robot configuration space dimensionality, we accumulate individual feet to
foot pairs. A Level 2 robot pose ~r = (~rb, ff , fr) is consequently represented by its robot base
pose ~rb and its relative longitudinal foot pair coordinates for the front foot pair ff and the rear
foot pair fr. Note that our platform and planner only allow sagittal leg movement. Lateral foot
coordinates are fixed and thus a single variable is sufficient to describe each foot pair.

3 METHOD 13

CENTAURO – 644839 D5.3 Driving Navigation

The robot actions are defined accordingly. Driving neighbours can be found similar to
Level 1 but with a doubled action resolution of 5 cm and 32 discrete robot orientations at each
position. Additional stepping-related manoeuvres differ from Level 1 since the robot is only
able to move foot pairs instead of individual feet. If the robot is close to an obstacle, it may
move a foot pair. For this action, the planner needs to distinguish between shifting both feet
of this pair, stepping with one foot and shifting the other foot or stepping with both feet, as
visualized in Figure 13.

The costs for such a foot pair manoeuvre are the concatenated costs for each individual foot
action as described for Level 1. If, for example, the robot moves its front foot pair forward as
visualized in Figure 13 a2, the costs for this manoeuvre are the sum of the costs for shifting the
front left foot forward and step with the front right foot. Since the map resolution in Level 2 is
coarser and height difference values in Level 2 differ from those in Level 1, we reparametrized
the cost computation. We do this by performing foot pair manoeuvres in a variety of differ-
ent scenarios, perform the same manoeuvre in Level 1 and manually change the Level 2 cost
parameters until the costs for those manoeuvres in both levels vary by ≤ 5%.

In addition to foot pair manoeuvres, the robot is able to shift its base forward (Figure 13 b).
If a foot pair is not in its neutral position, it may be shifted towards its neutral configuration
(Figure 13 c).

Figure 13: Level 2 stepping-related manoeuvres: When moving a foot pair, it has to be distin-
guished between shifting both feet (a1), shifting one foot and step with the other (a2) or step
with both feet (a3). Moreover, the robot may perform a longitudinal base shift (b) or move each
foot pair towards its neutral position (c).

During planning and execution, it is an important feature to refine Level 2 path segments
into Level 1. To refine a Level 2 path segment between two successive poses ~ri and ~ri+1, we
transform both poses into Level 1 and generate a set S of feasible robot base poses by interpolat-
ing between ~ri and ~ri+1. S is then inflated with a radius of two position steps and one orientation
step as visualized in Figure 14. A local planner, which is restricted to S, searches for a Level 1
path between ~ri and ~ri+1. If

• either one of the two poses becomes infeasible when transformed to Level 1 because
Level 2 estimated the given situation wrongly or

• the cost for the refined Level 1 path differs by > 25% from the original cost for the path
segment,

we call this path segment ”not refineable”.

3 METHOD 14

CENTAURO – 644839 D5.3 Driving Navigation

Figure 14: Generating of a set of feasible robot base poses for path refinement: a) For a given
start (~ri, red arrow) and goal (~ri+1, green arrow) robot base pose, we generate a set of feasible
robot base poses (black lines) by interpolating between the two. b) Inflation by two position
steps and one orientation step.

3.4 Level 3 Representation
We apply the subsampling process which was described for Level 2 to generate a Level 3 height
map and height difference map with a resolution of 10 cm from the Level 2 height map and
height difference map. To increase the semantics of the environment representation, we catego-
rize each Level 2 map cell into one of the following terrain classes:

• Flat surface: The ground is even and easily traversable by driving,

• Rough surface: The ground is uneven but still traversable by driving,

• Stepping surface: The surface shows height differences which are too large to be traversed
by driving but can be traversed by stepping,

• Wall: Occurring height differences are too large to be traversed by stepping and

• Unknown: The cell cannot be classified.

First, we search for cells of the terrain type ”Stepping surface”. This is done by searching for
cell pairs ci and cj that fulfill the following criteria:

• CF (ci) <∞: ci is on a drivable surface,

• CF (cj) <∞: cj is on a drivable surface,

• ‖ci − cj‖ < 0.45m: The distance between ci and cj is within a maximum step length, and

• for the set T of cells ck on the straight line between ci and cj , CF (ck) =∞ counts for all
cells ck ∈ T : A direct foot movement from ci to cj requires a step.

For all pairs of ci and cj which fulfill these criteria, ci, cj and T are assigned the terrain class
”Stepping surface”. Second, we classify the remaining cells by their Level 2 height difference
value4H:

• ”Flat surface” if4H(ci) ∈ [0, 2 ∗ 10−4],

• ”Rough surface” if4H(ci) ∈ [2 ∗ 10−4, 0.05],

• ”Wall” if4H(ci) ∈ [0.05,∞],

3 METHOD 15

CENTAURO – 644839 D5.3 Driving Navigation

Figure 15: Level 3: a) height map, b) terrain class map (white = flat, blue = stepping, pink =
wall), c) foot cost map.

• ”Unknown” if4H(ci) is unknown.

The height difference intervals are tuned manually with respect to a maximum height difference
of 4 cm which can be overcome by driving and a maximum height difference of 30 cm which
can be overcome by stepping. The terrain class of a Level 3 map cell is generated from the
respective four Level 2 cells by either choosing the terrain class with most members or, if this
cannot be identified, the easiest occurring terrain class.

Another source for terrain class segmentation can be camera images combined with geo-
metric features as shown in CENTAURO Deliverable D5.2 Terrain Classification [4] and [36].
Figure 15 a-b gives an example for a Level 3 height map and terrain class map.

The Level 3 robot representation ~r = ~rb only consists of the robot base pose ~rb. Feet have
fixed positions relative to the robot base. Hence, the robot is not able to perform individual foot
or foot pair movements. The whole robot is rather moved over the terrain and traverses different
terrain classes with different costs. Path search neighbour poses can be found similar to the
driving neighbours described for Level 1. In this level of representation, the action resolution is
10 cm and the robot may have 16 different orientations at each position.

Regarding cost generation, base cost do only depend on height information and are com-
puted as described for Level 1. For foot cost computation, we assign each terrain class a fixed
foot cost value. However, stepping cost strongly depend on the height difference to overcome
and high steps are much more expensive than low steps. Thus, it is not sufficient to assign
all cells of the terrain class ”Stepping surface” with a fixed value since the original costs of
traversing certain scenarios in Level 1 may differ too much from the estimated costs in Level 3.
Instead, we introduce a linear dependency

CF(cStep) = 3.95 + 33.0 ∗ 4H(cStep) (4)

between the height difference 4H and the foot costs CF for each cell cStep with the terrain
class ”Stepping surface”. Foot costs for each terrain class are parametrized to match best the
cost, the respective path would carry in Level 1. This is done by comparing a set of simple and
challenging paths from a start to a goal pose in Level 1 and Level 3 and adjusting the costs for
Level 3 until they differ from the Level 1 cost by ≤ 5%. A resulting foot cost map can be seen
in Figure 15 c.

Level 3 paths can be refined to Level 2 paths in the following way: As described for Level 2,
we generate a set S of feasible robot base poses. In contrast to Level 2, we do not only consider
two successive poses but the whole path segment ~rs, ..., ~rg that needs to be refined at once. The
first and last robot pose ~rs and ~rg of this Level 3 path segment are transformed to a Level 2 start
and goal pose and a local Level 2 planner, which is restricted to S, searches for a path between

3 METHOD 16

CENTAURO – 644839 D5.3 Driving Navigation

~rs and ~rg. If a Level 3 path needs to be refined to Level 1, Level 2 is taken as an intermediate
refinement step.

3.5 Level Transition
All three levels of representation are combined in a single planner, which chooses the lowest
available level for each pose to provide the most detailed planning. Since planning in a low
level of representation is slower, we provide Level 1 data only in a small area around the robot
position which is sufficiently big to plan the next manoeuvres. Level 2 data is provided for a
medium-sized region around the current robot position while Level 3 covers the whole map.

The planner checks for each manoeuvre (e.g., drive into one direction, do a step, shift a
wheel pair, ...) if both, start and goal pose of this manoeuvre, are part of the same level of
representation. If the goal pose is not part of the start pose level of representation, the start pose
is transformed to the next higher level of representation and the same manoeuvre is planned
again in this higher level if it is still available in this level. Note that the transformation of the
start pose to the next higher level of representation might induce costs. Due to different map
resolutions, the robot might be slightly shifted to fit into the next level map cell and discrete
orientation. Due to increasing foot restrictions, single feet might be shifted to fit the next level
robot representation (e.g., single feet may have to be moved, to align to foot pairs with the same
longitudinal coordinate). We check for each transformation if it is feasible and generate costs
from the occuring base and foot costs.

3.6 Heuristic
We integrate three different heuristics in our planner. Their performance is compared in Sec-
tion 4.

A very common heuristic for path planning is the Euclidean distance. Our cost terms are
parametrized in a way that perfectly flat terrain carries the cost 1 and thus, driving over perfectly
flat terrain induces cost equal to the driving length. Driving cost increase for more challenging
terrain. Hence, the Euclidean distance always underestimates path cost and is feasible.

The Euclidean Distance only considers the robot position but does neglect its orientation.
We introduce a second heuristic which extends the Euclidean Distance by a cost estimation to
overcome the orientation difference from any pose to the goal pose. The cost to overcome an
orientation difference is estimated by the cost to turn that angle on place on perfectly flat terrain.
This is added to the Euclidean distance.

Both presented heuristics do not consider the terrain, the robot is traversing. Since terrain
difficulties (e.g. staircases, obstacles to avoid) have large influence on the path costs, we include
those in a heuristic to achieve better cost estimations. We utilize the Level 3 foot cost map to
include terrain information in a heuristic which we call Dijkstra heuristic.

For the planner goal pose ~rG = (~rbG, f1G, ..., f4G), we determine the Level 3 map cells
c ~f1G

, ..., c ~f4G
for each of the four foot positions ~f1G, ..., ~f4G. An one-to-any 2D Dijkstra search

on Level 3 foot costs is started from each of c ~f1G
, ..., c ~f4G

. Hence, we get for each Level 3 cell
ci in the map four values g1, ..., g4 which describe the costs to move a single foot from ci to
c ~f1G

, ..., c ~f4G
.

In addition, we do a similar search for the robot base center. However, the robot base
is not directly affected by different terrains, but we know that it cannot move through walls.
We use this property to generate an occupancy grid from the Level 3 terrain class map which
marks all cells of terrain class ”Wall” as untraversable and all other cells of known terrain class

3 METHOD 17

CENTAURO – 644839 D5.3 Driving Navigation

as traversable. A fifth one-to-any 2D Dijkstra search on this occupancy grid is started from
the robot base center goal cell c~rbG and provides for each cell in the map ci a value gb which
describes the cost of moving the robot base center from ci to c~rbG .

During path planning, we can use these generated values g1, ...g4, gb as a heuristic. For any
given robot pose ~ri, we first determine the Level 3 map cell for each of the four feet c ~f1i

, ..., c ~f4i

and the robot base center c~rbi . The accumulated cost gi = gb(c~rbi) +
∑4

j=1 gj(c~fji
) is a cost

estimation for moving the whole robot from ~ri to ~rG. Note that the costs for the individual robot
component movements (feet and robot base) are lower when those components are considered
isolated in comparison to movements of the whole robot where those components underlie
geometrical restrictions. But, since a heuristic shall underestimate costs, this is admissible.
Further note that the quality of this heuristic strongly depends on the quality of the Level 3 cost
model in comparison to costs for the same manoeuvres in other levels of representation.

3.7 Planning Improvement
Due to the fine position and orientation resolution and the high robot state dimensionality in
lower representation levels, the search space which is considered for path planning is large.
Moreover, we want the planner to consider several detours before taking a step, which fur-
ther increases planning times. We present methods to accelerate planning and to improve the
resulting path quality. Their individual effects are investigated during evaluation.

3.7.1 Robot Orientation Cost

Although our robot is capable of omnidirectional driving, there are multiple reasons to prefer
driving forward. Since the sensor setup is not only used for navigation, but also for manipula-
tion, it is designed to provide best measurement results for the area in front of the robot. The
required width clearance is minimal when driving in a longitudinal direction, which is helpful
in narrow sections such as doors. The same applies to driving backwards. Driving straight
backwards requires a smaller clearance than driving diagonal backwards. Finally, our leg de-
sign restricts us to perform steps in the longitudinal direction. Thus, when approaching areas
where stepping is required, a suitable orientation is helpful. We address this desire of preferring
special orientations by multiplying neighbour costs during A* search by the individual factor
k4θ, as described in Figure 16.

Figure 16: For a difference between the robot orientation and driving direction 4θ, the cost
factor k4θ is computed which expresses the desire to drive forward. It is 1 within an orientation
step of 2 π/60 and increases up to k12. When driving backward, there is a desire to drive straight
backwards since the required clearance is smaller.

3 METHOD 18

CENTAURO – 644839 D5.3 Driving Navigation

3.7.2 ARA*

To obtain feasible paths quickly, we extend the A* algorithm to an Anytime Repairing A*
(ARA*). When planning with higher weighted heuristics, the planner prefers those driving
manoeuvres that bring it as close to the goal as possible. This leads to the undesired effect that
resulting paths mainly consist of those driving manoeuvres which go two cells in one direction
and one cell in an orthogonal direction, as can be seen in Figure 17 a. To prevent this behaviour,
we extend the driving neighbourhood size from 16 to 20, as shown in Figure 17 b.

Figure 17: Addressing ARA* preferences of long moves. a) For larger heuristic weights, the
ARA* algorithm prefers those driving manoeuvres which bring the robot as close to the goal
as possible which leads to undesired paths (black arrows). b) To obtain the desired behaviour
(blue line) we extend the driving neighbourhood by the four red manoeuvres.

3.8 Generation of Feasible Motion Sequences
The result of the A* search is an abstract path which lacks executable motion sequences for
steps and information about leg length. We expand those abstract path segments which are part
of Level 1, which is the area around the robot. Path segments of higher representation levels
are expanded, when they are close to the robot and represented in Level 1. The expanded path
contains leg length information and stable, detailed motion sequences for steps which can be
executed by the controller.

3.8.1 Robot Stabilization

Abstract steps only describe the start and goal poses for a stepping manoeuvre. An executable
transition between these poses is a motion sequence which keeps the robot stable at all times.
Such a motion sequence is generated for each abstract step in the path. Due to the compliant
leg design of our robot, we have no information about the exact position of the feet but have to
estimate it from actuator feedback. Hence, we limit stability considerations to static stability.
Since actuator speeds are slow, dynamic effects can be neglected. Stability estimation while
stepping is done on the support triangle which is spanned by the horizontal position of the
remaining three feet with ground contact (Figure 18). If the horizontal robot center of mass
(CoM) projection is inside the support triangle, the robot pose is stable. The closer the CoM is
to the support triangle centroid (STC), the greater the stability.

Lateral alignment of the CoM and STC is done by base roll motions (Figure 18), which are
rotations around the longitudinal axis. These are achieved by changing the leg lengths on one
side of the robot. The resulting angle between the wheel axes and ground is compensated by the
compliant legs and the soft-foam filled wheels. Roll manoeuvre parametrization is described in
Section 3.8.2.

Longitudinal alignment of the CoM and STC is done by driving the remaining pair of wheels
on the stepping side (e.g., the rear left foot if the front left foot is stepping) towards the robot

3 METHOD 19

CENTAURO – 644839 D5.3 Driving Navigation

Figure 18: To find a stable position for stepping, the robot CoM (red dot) needs to be aligned
with the STC (green dot). Lateral alignment is done by base rolling. Longitudinal alignment is
either done by a) driving the remaining pair of wheels on the stepping side towards the center
or b) by shifting the robot base.

Figure 19: Our hybrid wheeled-legged mobile manipulation robot Momaro is capable of omni-
directional driving (left) and stepping (right).

center (Figure 18). If this does not suffice because the motion is hindered by obstacles, the
remaining longitudinal alignment is done by shifting the robot base. The longitudinal CoM
position is also affected by the robot base pitch angle which is described in the next subsection.
The presented motions generate a stable robot configuration which allows the desired step to
be performed. After stepping, the robot reverses its base roll, foot displacement, and base shift
manoeuvres to get back to its nominal configuration.

3.8.2 Leg Lengths

Each robot pose is assigned an individual length for each leg, which describes the vertical
position of a foot relative to the robot base. When driving with neutral footprint, a short leg
length of 0.27 m is chosen, which provides a low CoM and good controllability through reduced
leg compliance (see Figure 19 left). A larger ground clearance is chosen for manoeuvres other
than driving to provide great freedom for leg movements (see Figure 19 right). In this case, the
base height is determined by the highest foot. A soft constraint is applied that the leg length
should be at least 0.45 m. At the same time, a hard constraint from the mechanical system is
that none of the legs exceeds its maximum length. The height of each individual foot can be
read from the 2D height map. The robot base pitching angle is set to be 70% of the ground
slope, as can be seen in Figure 20. This pitching value provides a good compromise between
sufficient ground clearance for all four legs and a good CoM position.

As described before, base roll manoeuvres are used to shift the robot CoM laterally. Due to
the soft-foam filled wheels, we can estimate the center of rotation R(y′rot, z

′
rot) between the two

3 METHOD 20

CENTAURO – 644839 D5.3 Driving Navigation

Figure 20: Momaro climbing a flight of stairs. The robot base pitch angle adapts to 70% of the
terrain slope.

wheels (Figure 21). In addition, the center of mass position C(y′CoM, z
′
CoM), the angle

α = arctan
(
y′rot − y′CoM

z′CoM − z′rot

)
(5)

between ~RC and the vertical axis and the desired lateral center of mass position y′CoM,des are

given. Using
∥∥∥ ~RC

∥∥∥ =
∥∥∥ ~RCdes

∥∥∥ we compute the desired angle between ~RCdes and the vertical
axis

αdes = arcsin

y

′
rot − y′CoM,des∥∥∥ ~RC

∥∥∥

 (6)

and consequently using the footprint width b we compute the desired leg height difference

4 hleg = b · tan(α− αdes). (7)

This leg height difference is added to both legs on the respective side to induce a base roll
manoeuvre. Figure 22 shows how Momaro steps up an elevated platform, using the described
motion sequences.

Figure 21: Momaro’s lower body in back view. Lateral CoM shifts can be achieved by changing
leg length on one side which rolls the robot.

3 METHOD 21

CENTAURO – 644839 D5.3 Driving Navigation

Figure 22: Momaro stepping up an elevated platform. a) It arrives at the platform in low driving
position, b) stands up, c) rolls its base to the left to shift its CoM laterally, d) drives its rear
right pair of wheels forward to reach a stable stepping configuration. e) It then steps with its
front right foot, f) drives its rear right pair of wheels back and g) rolls back its base to reach
the configuration it had before the step. The remaining steps follow a similar motion sequence
which is shown in less detail. Subsequently, h) Momaro steps with its front left foot. i) It then
drives forward and j) shifts its base forward before k) doing a step with the rear left and l) rear
right foot. m) When the robot stands on the platform, n) it lowers its base to continue driving.

4 Evaluation
We evaluate the performance of our planner in three experiments which focus on different as-
pects of our method. All Experiments are performed in the Gazebo simulation environment.
The used hardware for planning is one core of a 2.6 GHz Intel i7-6700HQ processor using
16 GB of memory. Video which show several experiment of the real and simulated robot can be
seen online1 2.

4.1 Heuristic Comparison
A first experiment compares the Dijkstra heuristic to the plain Euclidean distance and Euclidean
distance combined with orientation differences. The robot stands in front of an elevated plat-
form with an irregular edge. A small wall restricts the traversable area. The planning goal is
situated between two pillars on this platform. The whole experiment is done in Level 1. Since
we use an ARA* algorithm which works with several heuristic weights, we evaluate the influ-
ence of these heuristic weights. Figure 23 shows the scenario, the Level 1 foot cost map and
the Level 3 foot cost map which is used for the Dijkstra heuristic. Preprocessing the Dijkstra
heuristic takes 0.016 s for this map. Figure 24 shows the resulting planning time and result costs
for all three heuristics and several heuristic weights.

The results indicate that planning with the Dijkstra heuristic is significantly faster while
the path costs are ≤ 5% more expensive compared to the other heuristics. The results further
indicate that increasing heuristic weights accelerate planning with the Dijkstra heuristic by up
to four orders of magnitude while the path costs increase by ≤ 45% (heuristic weight of 3). For
lower heuristic weights, the path costs quickly decrease to an acceptable level of≤ 105% of the
optimal costs (heuristic weight = 1.5).

1https://www.ais.uni-bonn.de/videos/IROS_2017_Klamt/
2https://www.ais.uni-bonn.de/videos/ICRA_2018_Klamt/

4 EVALUATION 22

https://www.ais.uni-bonn.de/videos/IROS_2017_Klamt/
https://www.ais.uni-bonn.de/videos/ICRA_2018_Klamt/

CENTAURO – 644839 D5.3 Driving Navigation

Figure 23: Experiment to compare the different heuristics with each other. a) Scenario: The
robot has to step up an elevated platform which is partly blocked by a small wall. The goal
pose is between the two columns on this platform. b) Level 1 foot cost map with result path for
Dijkstra heuristic and heuristic weight of 1.5. c) Level 3 foot cost map which is used to compute
the Dijkstra heuristic.

Figure 24: Planning time and path cost for the experiment, shown in Figure 23. The three
different heuristics Euclidean distance, Euclidean distance + orientation difference and Dijkstra
heuristic are compared for heuristic weights between 1.0 and 3.0.

4.2 Effect of Orientation Cost Term
In a second experiment, we evaluate the effect of the introduced heuristic cost term (see Sec-
tion 3.7.1). Again, the robot has to climb up an elevated platform which is partly blocked by
cluttered obstacles. Figure 25 shows the scenario and two resulting path with and without an
orientation cost term. Figure 26 shows the result planning time and path cost and evaluated
the effect of the orientation cost term on the orientation difference between robot orientation
and driving direction. The used heuristic is the ”Euclidean distance + orientation difference”
heuristic.

4 EVALUATION 23

CENTAURO – 644839 D5.3 Driving Navigation

Figure 25: Experiment to evaluate the effect of the orientation cost term. a) Scenario: The
robot stands in front of an elevated platform, cluttered with obstacles and has to reach a pose on
this platform. b) Resulting path of a plain A* search without orientation cost term and with a
heuristic weight of 1.0 on a foot cost map of Level 1. Yellow areas are not traversable by driving.
Blue paths show the robot center position, arrows show the orientation. Blue rectangles show
used footholds. Red lines represent front foot steps, green lines represent rear foot steps. c)
Resulting path with orientation cost term (k12 = 2).

Figure 26: Comparison between the original A* planner (k12 = 1) and the modification with a
robot orientation cost term.

4.3 Effect of Multiple Levels of Representation
In a further experiment, we evaluate the different presented levels of representation. We plan on
a height map which contains many different terrain difficulties our robot could face, as shown in
Figure 27. In a first run, we generate four plans from robot pose a to e: three for the task solved
in each level individually and one using all three levels at the same time. For this, we choose
the Level 1 size to be 3×3 m. This size is sufficiently large to plan the next robot manoeuvres
in high detail, but still small enough to not slow down the whole search too much due to high-
dimensional planning. The Level 2 size is chosen to be 9×9 m so that the Level 2 path segment
is about twice as long as the Level 1 path segment. Level 3 covers the whole map. The heuristic
weight is chosen to be 1.25. The Dijkstra heuristic is used and takes 0.027 s for preprocessing.

The resulting path can be seen in Figure 28 and the planner performance is shown in Fig-
ure 29. It can be seen that planning on levels of representation> 1 and in the scenario with com-

4 EVALUATION 24

CENTAURO – 644839 D5.3 Driving Navigation

Figure 27: Height map for the second experiment containing a bar obstacle (I), a rough area
(II), a door (III), a flight of stairs (VI) and two obstacles (V). a - d are different starting poses
for the planner, e is the goal pose.

4 EVALUATION 25

CENTAURO – 644839 D5.3 Driving Navigation

Figure 28: Resulting path for planning in combined levels with a heuristic weight of 1.25.
Level 1 path segments = red, Level 2 segments = blue, Level 3 segments = green. Arrows show
the robot orientation.

bined levels is faster by at least two orders of magnitude compared to pure Level 1 planning.
Regarding the path costs, we distinguish between the path costs in the respective level of repre-
sentation (estimated cost) and the costs each path carries when refined to Level 1. Comparing
the estimated costs to the Level 1 costs gives an assessment about the quality of cost generation
in each level of representation. The comparison of the refined Level 1 costs indicates the quality
of the resulting path. It can be seen that the estimated costs always underestimate the refined
Level 1 costs but the difference is always ≤ 9%. The refined Level 1 paths are ≤ 15% more
expensive than the pure Level 1 path.

We finally compare the planner performance when started from different poses in the map
as shown in Figure 27. The results in Figure 30 indicate that an important factor for the planner
performance is the complexity of the planning within Level 1 but higher heuristic weights lead
to feasible performances in any case.

4 EVALUATION 26

CENTAURO – 644839 D5.3 Driving Navigation

Figure 29: Planning performance for different levels of representation, using the Dijkstra heuris-
tic with a heuristic weight of 1.25.

Figure 30: Planning time for different starting poses (see Figure 27) and different heuristic
weights, using the Dijkstra heuristic.

4 EVALUATION 27

CENTAURO – 644839 D5.3 Driving Navigation

5 WP5 on the CENTAURO Robot
As shown in Figure 1, we integrated and tested the communication links between all compo-
nents of WP5. We established the interfaces of the output robot control commands to Verosim
and the real robot. All tasks have been tested with the Momaro model in both simulated and real
world environment. The tasks of rough terrain SLAM and semi-autonomous driving/stepping
locomotion have been integrated and tested on the CENTAURO model. The task of terrain clas-
sification with terrain label ”safe, risky and obstacle” has been tested on the data recorded by
the CENTAURO robot during the evaluation camp. In this section we will describe the status
of each component in WP5 working on the CENTAURO robot. An overview of the current
integration status on the CENTAURO robot is shown in Figure 31.

Figure 31: The current integration status of WP5. The black arrow indicates the interface that
has been fully tested on the CENTAURO robot and the gray arrow indicates the interface that
has been partially tested.

5.1 Rough Terrain SLAM
As for the Momaro robot, we employ our mapping and localization approach based on local
multiresolution surfel grid maps [?] on the CENTAURO robot. Similarity between the sen-
sor setups and software systems allowed for easy setup and integration of necessary software
components. The laser scanner provides about 300,000 range measurements per second with a
maximum range of 100 m. It is rotated at 0.1 rotations per second, resulting in a dense omnidi-
rectional 3D scan per half rotation. Slower rotation is possible if a higher angular resolution is
desired. For our current setup, we acquire one full 3D scan every 5 seconds and compensate for
sensor motion during acquisition by incorporating measurements of the IMU. Figure 32 shows
an example of a generated point cloud and a localized robot.

5.2 Terrain Classification
The terrain classification system generates a terrain class map with label ”safe”, ”risky” and
”obstacle” using the RGB image and the registered pointcloud. The RGB image is from the
Kinect sensor and the pointcloud is produced by the 6D SLAM component. The output terrain
class map is sent to the Hybrid path planner to test the interface.

5 WP5 ON THE CENTAURO ROBOT 28

CENTAURO – 644839 D5.3 Driving Navigation

Figure 32: Centauro overcoming a step field: Scenario (left), localized robot and registered
point cloud color coded by height (right).

During the evaluation camp at KHG, the robot was controlled semi-autonomously without
the high level planning that uses the terrain classification. Therefore the terrain classification
component was only tested off-line using the data recorded. Before the evaluation, to adapt to
the testing environment at KHG, we manually labeled three images to fine-tune our model. An
example classification result of the stepping field is shown in Figure 33. The interface between
output terrain class map and the hybrid path planner has been tested using the old data recorded
in Bonn.

Figure 33: The classification result of KHG stepping test. From left to right is the RGB image,
registered pointcloud and the classification result as colored points (green as safe, yellow as
risky and red as obstacle).

5.3 Semi-autonomous Driving/stepping Locomotion
During the integration meeting between UBO and IIT in Genoa in November 2017 and the
successive evaluation camp in Karlsruhe, we were able to establish the control interface of the
Centauro robot. The interface consists of two parts, which are necessary to execute paths that
are planned by the hybrid path planner and executed by the successive high-level controller:

• A 3D (vx, vy, vθ) omnidirectional velocity vector. This interface is used to control omni-
directional driving in an arbitrary leg configuration.

• Leg movement actions which move all four feet to given coordinates in Cartesian space
in robot coordinates. This interface is used to control steps and all stepping related ma-
neuvers such as base rolls, base shifts or foot shifts.

The 3D omnidirectional velocity vector interface was tested by controlling the robot with a
joystick which uses the same interface. We used such control to drive up a ramp, to perform

5 WP5 ON THE CENTAURO ROBOT 29

CENTAURO – 644839 D5.3 Driving Navigation

driving sub-maneuvers while stepping over a gap, to precisely correct the robot position while
walking over a step field and to move through a door, as shown in Figure 34.

Figure 34: The 3D omnidirectional driving interface was used during several tasks at the eval-
uation camp in Karlsruhe. a) Driving up a ramp, b) driving submaneuver while stepping over
a gap, c) precise robot positioning while navigating a step field and d) opening and moving
through a door.

The leg movement action interface was used to perform the step field task in a semi-
autonomous way. We developed a user interface to trigger individual robot maneuvers such
as steps with a given foot. The action sequences that are necessary to perform such maneuvers
are performed autonomously and send to the robot via the described leg movement action in-
terface (e.g. a step maneuver consists of the following action sequence: longitudinal base shift,
base roll, foot lift, leg extension, foot lowering, base roll and base shift). Moreover, we used
torque measurements from the robot joints to detect ground contact of the stepping foot and
stop the foot lowering action respectively as soon as the foot touched the ground. Figure 35
shows the user interface and the Centauro robot while stepping in the step field.

Figure 35: The step field task was solved semi-autonomously by a) a user interface which
triggers maneuvers that are b) executed by the robot.

5 WP5 ON THE CENTAURO ROBOT 30

CENTAURO – 644839 D5.3 Driving Navigation

6 Future Work
We plan to extend the current navigation system by introducing new terrain classes, like stairs,
which are highly relevant in indoor and urban environments. Furthermore, the existing planning
approach will be extended to consider lateral leg movements in both, driving and stepping
motions. Up to this point, the method was mainly developed for Momaro, because it was
possible to perform experiments with it. Momaro did not allow lateral leg movements due to its
design. Since the Centauro robot is available now, the method will be transferred to this robot
in both, simulation and real experiments which includes adding additional capabilities of the
Centauro robot. Ongoing work with an alternative planning strategy (see Appendix: Additional
Work 4) using deep reinforcement-learning could provide an additional suggested path that can
be presented to the operator, who can then chose which path to pick. We will integrate the
additional planner to the navigation pipeline with Verosim and the real robot after we extend
its capability from simulated scenes to real world tasks. After we include the operator in the
loop, we plan to take the feedback regarding terrain traversability from the operator to perform
an on-line supervised learning for terrain classification.

6 FUTURE WORK 31

CENTAURO – 644839 D5.3 Driving Navigation

A Additional Work in Workpackage 5

A ADDITIONAL WORK IN WORKPACKAGE 5 32

CENTAURO – 644839 D5.3 Driving Navigation

A.1 Additional Work 1
Computing a Collision-Free Path using Harmonic Potentials

The paper [13] introduces a novel method for finding a safe route through an environment. It is
based on the monogenic scale-space in combination with a potential-based representation of the
environment, where the latter directly enables the path planning. The paper also demonstrates
how the method can be used to handle obstacles. Furthermore, it is also possible to introduce
”soft obstacles”, such as terrain types that might be more dangerous to traverse than others.

A.1.1 Connection to CENTAURO

The novel method reported above is highly relevant for a robot in a disaster area, especially
for the Centauro robot with multiple terrain traversal modes. The proposed approach applies to
both the global map and the local navigation map as described in CENTAURO Deliverable D5.1
CENTAURO Navigation Concept [15]. Future investigation will show whether the proposed
continuous approach will improve performance compared to the current grid-based approach.

A ADDITIONAL WORK IN WORKPACKAGE 5 33

CENTAURO – 644839 D5.3 Driving Navigation

Table 1: Absolute Trajectory Error (ATE) for a subset of datasets from the TUM RGB-D
datasets using different types of features in the same visual odometry pipeline.

Dataset GCN ORB SIFT SURF

fr1 floor 0.015m 0.080m 0.073m 0.074m
fr1 desk 0.037m 0.151m 0.144m 0.148m
fr1 360 0.059m 0.278m 0.305m 0.279m
fr3 long office 0.061m 0.090m 0.076m 0.070m
fr3 large cabinet 0.073m 0.097m 0.091m 0.143m
fr3 nst 0.020m 0.061m 0.036m 0.030m
fr3 nnf 0.221m - - -

A.2 Additional Work 2
Geometric Correspondence Network for Motion Estimation

In the literature, approaches can roughly be divided into sparse / feature based and dense /
direct. In this work [40] we address the problem of identifying and matching key points in
sparse / feature based methods. It is well known that the key points have to be selected carefully
and that matching them correctly is essential for accurate motion estimation. Current state of
the art methods like ORB-SLAM make use of hand crafted features still. We investigate how to
train both the detection and matching of key points jointly. To this end we jointly train a CNN
on top of an RNN in what we call the Geometric Correspondence Network (GCN). The CNN
outputs a 64 channel feature map and the RNN outputs a heat map indicating which parts in
the images are suitable as key points. The training is accomplished by extracting high gradient
points in one image and then warping them using the known transformation between the frames
(given by ground truth pose from SLAM dataset). The training is thus trying to find feature
maps from the CNN that provide a good basis for matching at the same time as the RNN learns
which points to use.

We trained the network on data from the TUM RGB-D dataset. A requirement for the
training is that we have access to ground truth pose data so that we can perform the warping from
one image to the next. In a preliminary evaluation we also tested the performance in a visual
odometry context. The same pipeline was used with different types of features. Table 1 show
the Absolute Trajectory Error (ATE) for a subset of datasets from the TUM RGB-D datasets
(not used for training). Notice that the GCN features improves the performance over the tested
hand crafted features for all datasets.

A.2.1 Connection to CENTAURO

Estimating the motion of a sensor is central to many tasks, such as local 3D reconstruction and
large scale mapping. These are both key areas in CENTAURO. Our GCN method has so far
been tested on standard SLAM benchmark datasets and on data from a UAV and have shown
very promising results. We plan to investigate how well it works with data from the Centauro
robot. As the detection and matching of key points relies mostly on the RGB information, we
believe that the method can be used both with stereo data and as well as data from Kinect v2.

A ADDITIONAL WORK IN WORKPACKAGE 5 34

CENTAURO – 644839 D5.3 Driving Navigation

Table 2: Benchmark results on the reduced test set in Semantic3D [9]. IoU for categories (1)
man-made terrain, (2) natural terrain, (3) high vegetation, (4) low vegetation, (5) buildings, (6)
hard scape, (7) scanning artefacts, (8) cars.

Avg IoU OA IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8

TML-PCR[26] 0.384 0.740 0.726 0.730 0.485 0.224 0.707 0.050 0.000 0.150
DeepNet[9] 0.437 0.772 0.838 0.385 0.548 0.085 0.841 0.151 0.223 0.423
TLMC-MSR[10] 0.542 0.862 0.898 0.745 0.537 0.268 0.888 0.189 0.364 0.447

Ours RGB 0.515 0.854 0.759 0.791 0.720 0.335 0.857 0.209 0.123 0.326
Ours D 0.262 0.662 0.281 0.468 0.395 0.179 0.763 0.006 0.001 0.000
Ours N 0.511 0.846 0.815 0.622 0.679 0.164 0.903 0.251 0.186 0.470
Ours RGB+D+N 0.585 0.889 0.856 0.832 0.742 0.324 0.897 0.185 0.251 0.592
Ours D+N 0.543 0.872 0.839 0.736 0.717 0.210 0.909 0.153 0.204 0.574

A.3 Additional Work 3
Deep Projective 3D Semantic Segmentation

The Kinect v2 is a useful sensor for many tasks within robotics. However, the performance
is significantly reduced in outdoor environments and for surfaces with high reflectance. In
the CENTAURO project, however, additional sensors such as the rotating lidar and the color
cameras can be used to complement the Kinect v2 for the workspace perception task. The
lidar and the color cameras can be combined to generate a colored point-cloud. In this work
we propose also a method of point-cloud segmentation [22], where we render color, depth and
other attributes extracted from the point-cloud. The images are then processed by a CNN for
image-based semantic segmentation, providing a prediction score for the predefined classes in
every pixel. We make the final class selection from the aggregated prediction scores, using
all images where the particular points are visible. An overview of the method is illustrated in
Figure 36.

The method was evaluated on the Semantic 3D dataset, improving over previous methods,
see Table 2.

A.3.1 Connection to CENTAURO

The novel segmentation method can be seen as an alternative to the sequential pipeline described
in Deliverable D5.2 CENTAURO Terrain Classification [4].

A.4 Additional Work 4
Reinforcement learning for motion planning

A.4.1 Introduction

Over the past decade, legged robot such as the Big dog and little dog have shown its potential in
unstructured and challenging terrain. The more recent ’wheel-on-leg’ design such as Momaro
and Mammoth [33] combines the advantages of the flexibility legs on rough terrain with the
efficiency of traditional wheeled robot on flat terrain. The reconfigurable mobile robot is able to
dynamically alter its geometric structure to extend the mobility of the robot to adapt to a variety

A ADDITIONAL WORK IN WORKPACKAGE 5 35

CENTAURO – 644839 D5.3 Driving Navigation

Figure 36: Illustration of the proposed method for point-cloud segmentation. [22] The input
point-cloud is rendered from multiple views generating dense image representations. These
images are processed by a CNN for semantic segmentation. In the end the semantic score maps
are fused and mapped back to the 3D points.

A ADDITIONAL WORK IN WORKPACKAGE 5 36

CENTAURO – 644839 D5.3 Driving Navigation

of environments. However, motion planning for robots with many DoFs in cluttered and rough
terrain is challenging as the set of feasible configurations that allow collision-free and stable
motion lie in a small subspace of the whole configuration.

The high dimensional whole body planning problem is often decoupled into a set of lower
dimensional sub-problems to reduce the search space and computation time for each compo-
nent. [24] summarize the decoupled planning as motion-before-contact approach and contact-
before-motion approach.

The motion-before-contact approaches, such as [43], [19], [44] and [45], address the effi-
ciency issue by first planning a rough trajectory for the robot body center without considering
the configuration of its leg. Footsteps are then planned to roughly follow this trajectory while
considering appropriate constraints. The contact-before-motion approach, such as [41], trans-
lates the whole body motion planning to a lower dimension footstep trajectory planning. It first
selects a set of feasible foot holds, then finds the transitions between all the possible foot holds
and finally computes the path that links the initial and the target positions. Compared to the
motion-before-contact approach, the contact-before-motion approach generates more versatile
movements but it is more computationally expensive. Both the motion-before-contact approach
and the contact-before-motion approach attempt to construct an initial trajectory that provides
a restricted search space to allow a simpler planner to be used to generate the whole body plan.
This restriction step, however, may eliminate good solutions before the second planner starts to
compute the whole body trajectory. Moreover, the initial trajectory may not be feasible for the
whole body plan, as it is generated in a reduced dimensional space.

The Rapidly-Random Exploring Tree (RRT) algorithm [20] offers an efficient solution of
single-query motion planning problem by growing a tree in the configuration space towards
newly sampled configurations. While it is suitable for high DOF systems, it requires the knowl-
edge of the robot model and the environment to define the validation of the sampled configura-
tions.

Our goal is to develop a target-driven end-to-end whole body planner for a reconfigurable
robot with many DoFs. As a first step we consider the design of a local planner, which is able
to handle cluttered environments containing narrow passages. We us an on-line deep reinforce-
ment learning (DRL) procedure which do not require a human-guided training phase. We take
a local height map, current robot pose and the target position as input and directly map it to the
action commands. The aim is a local planner that this way is able to generalize to new scenes
with different target positions without additional training.

In the future work we plan to combine it with an RRT planner to improve the local connec-
tion efficiency of RRT and generate global plans over long distances. The RRT planner could
take the abstract environment information, such as the building blue print, and the global target
as input to sample a configuration in a lower dimensional space. The sampled configuration
could then be used as the sub-target to the DRL planner. The DRL planner then processes the
local observation and the sampled configuration to generate a whole body path to connect the
current configuration to the sampled configuration.

A.4.2 Related Work

Previous work already showed the performance gain by deep learning. [27] presents an ap-
proach that learns the heading policy from human demonstration for a mobile robot driving in
an off-road environment. [35] follows a similar process and applies it to a micro aerial vehicle
(MAV). The MAV takes image data as input and is able to autonomously fly through a forest
environment while avoiding collision with trees. [38] presents a laser-based end-to-end motion

A ADDITIONAL WORK IN WORKPACKAGE 5 37

CENTAURO – 644839 D5.3 Driving Navigation

planning approach based on deep auto-encoders learned from a dataset of sensor input and mo-
tor commands collected while being tele-operated by a human. [32] collects trajectories using
an existing global path planning approach and map the laser data and the target position to the
motion commands. Such learning processes are highly dependent on the demonstration. A time
consuming data collection procedure is inevitable.

A growing amount of success has been reported for DRL in navigation and motion planning.
[47] provides an approach for robot navigation based on depth images. The model is trained
using a deep Q-network (DQN), where successor features are used to transfer the strategy to
unknown environment efficiently. [12] and [28] have shown impressive results of learning lo-
comotion skills in both 2D and 3D. The models are evaluated using simulated characters with
many DoFs. However, the models are not applicable as a local motion planner as the target po-
sition is not taken into account. [39] presents a target-driven mapless motion planner using laser
to generate steering commands. [48] trains an image-based planner where the robot learned to
navigate to the reference image place based on the current view. All of these works are ap-
plied to the robots with few DoFs. [29] adopts a two-level hierarchical control framework: a
high-level controller to learn the desired steps and a low-level controller to perform the steps.
They evaluate the framework using a variety of environment-aware locomotion tasks including
navigation and obstacle avoidance. However the navigation and obstacle avoidance task does
not contain narrow passages.

A.4.3 Learning the Local Planner

Proximal Policy Optimization Algorithms In order to learn effectively in a challenging set-
ting like ours with many DoFs and a complex environment, it is necessary to have a reliable and
scalable reinforcement learning algorithm. The Proximal Policy Optimization (PPO) [12], [37]
has shown impressive performance on learning complex locomotion. We use the distributed ver-
sion of PPO (DPPO). With DPPO the data collection is distributed to multiple workers which
empirically has been shown to improve effectiveness. The PPO algorithm is based on the actor-
critic paradigm which consist of two distinct components: a policy network ”actor” to maintain
and update an action-selection policy; and a value network ”critic” to estimate the expected re-
turn associated with the actor’s policy. The trajectory is generated by calling the actor iteratively
until timeout or the target configuration is reached.

Environment and Robot Model

Robot Action Space As described in deliverable D2.3, each leg of CENTAURO robot
consists of six DoFs based on the spider like configuration. The design of the leg is shown in
Figure 37. To simplify the problem we assume all four legs perform the same action symmet-
rically. We use the hip pitch and knee pitch joints to adjust the robot posture and leave the
hip yaw joint as fixed. The ankle pitch joint is computed using inverse kinematics and the
ankle yaw joint and the wheel axis is adjusted by a controller.

We transfer the action space from the hip pitch and knee pitch joints to leg opening width
and body height. Together with the body translation along x and y axis and the body heading
angle yaw, we consider the lower body action space to be 5 dimensional.

We apply discretized action commands where each dimension of the action contains three
modes. Mode 1 performs an action along the positive direction with a fixed unit, mode 2
performs an action along the negative direction and mode 3 performs no action.

A ADDITIONAL WORK IN WORKPACKAGE 5 38

CENTAURO – 644839 D5.3 Driving Navigation

Figure 37: The lower body design of CENTAURO Robot. Blue encodes the hip yaw joint,
orange encodes the hip pitch joint, red encodes the knee pitch joint, green encodes the
ankle pitch joint, yellow encodes the ankle yaw joint and purple encodes the wheel axis.

Training Environment The training procedure of our planner is implemented in virtual envi-
ronments simulated by V-REP ([34]). The training environment consists of flat ground and ten
cylinder obstacles. The obstacles have three different heights which require three types of lo-
comotion skills to handle. The obstacle with low height is easy to drive over, only making sure
that the wheel itself does not collide with the obstacle. The obstacle with middle height may
collide with both wheels and legs, the planner has to lift the robot body and let it pass between
the narrow opening of the legs. The highest obstacle cannot be driven over, the planner should
generate a path around it to avoid any collision with the robot body. In the training environment,
we have three tall obstacles, three middle obstacles and four low obstacles. The obstacles and
one example training scene is shown in Figure 38.

In every episode, the obstacle number, the obstacle position, the robot’s initial pose and the
target position are randomly generated in the area of 3× 3 meter square. The robot initial pose
and the target position are guaranteed to be collision-free. The episode terminates when time
out or the target is reached. When the robot collide with an obstacle, we restore the robot back
to its previous collision-free pose, give negative reward and re-sample another action from the
action distribution. For training to be successful the robot must occasionally avoid all obstacles
and reach to the target. When there is narrow passage which allows only a small set of poses
to pass through, the probability of this happening is very small. In order to find path in narrow
passage, we do not terminate the episode when colliding with obstacles. Instead, we let the
robot search near the obstacle to look for any feasible path. Then we gradually improve the
initial path and keep searching for new paths.

Repeat Failed Episode It is difficult to control the complexity of the episode when all com-
ponents are randomly generated. The policy may converge to the local minima if the episodes
used to train the model contain bias. In our case, we notice that the path easily converged to
a straight line, since the obstacles are sparse and more than half of the randomly generated
episodes can be solved by moving straight to the target. We apply a repeat buffer to save the
episode which failed to reach to the target. When generating new episodes, we assign higher
probability to repeat a failed episode than to generate a random one. The failed episode contains
steps which are against to the current policy. The difficulty of the episode in the repeat buffer is
increased as the performance of the model increases. We observed that the model trained with a
repeat buffer improves faster and generalizes better to new episodes. To encourage exploration,

A ADDITIONAL WORK IN WORKPACKAGE 5 39

CENTAURO – 644839 D5.3 Driving Navigation

Figure 38: The left image shows the obstacles with three different height and the right image
shows an example of the training scene. The yellow point on the right image represents the
target position.

we add a random shift to the robot pose when restoring a failed episode.

Rewards We construct a reward function to guide the robot to reach to the target and avoid
collision. The reward consists of three components: a time penalty for each step rstep, a motion
cost rcost and a collision penalty rcollide.

reward = rstep × wobs dist + rcost + rcollide (8)

where wobs dist is a scale factor computed using the minimum distance between the obstacle
and the robot body. wobs dist equals to 1 when the distance between the robot and the obstacle
is greater than a threshold and wobs dist is greater than 1 when the distance is smaller. The
penalty is larger when the robot moves close to obstacles. rcost represents the cost of the action
performed and rcollide is the penalty when robot collides with an obstacle. When the target is
reached, the agent will get a positive reward rtarget and the episode is terminated.

Observation The agent receives three types of observations: (1) a height map with a radius
of 1 meter around the robot body center, (2) the current robot leg open width and body height
and (3) the distance and angle of the target to the robot. All observations are with respect to the
robot frame.

Policy parameterization Similar to [12] we separate the policy network into two subnet-
works. One subnetwork extracts features from the local height map and the other subnetwork
processes the current robot pose and the target information. We concatenate the output of the
two subnetworks and map it to the action and value using a fully connected network. The
structure of the network is shown in Figure 39. In our experimental setup, the height map
has resolution of 0.1m and each obstacle is represented by a single pixel. We found that the
fully-connected layer performs better than convolutional-layer to process the height map.

A.4.4 Preliminary Result

Learning curves For every iteration, we plot the average value of the episode length, discon-
tented return and the success rate to trace the learning progress. For every fifth iteration, we
evaluate the model in the environment used for regular planning test as described below. The

A ADDITIONAL WORK IN WORKPACKAGE 5 40

CENTAURO – 644839 D5.3 Driving Navigation

Figure 39: The left image shows an example of the training scene. The right image shows the
network structure. The height map is generated based on the configuration of the left image.

learning curves are shown in Figure 40, 41, 42 and 43. We use DPPO with eight workers to
collect the training samples and we use the batch size of 2048× 8 to update the model.

From Figure 42 we can see that the success rate starts to increase after a few iterations and
finally stabilized at around 80%. When we train the model, we assign a probability of 80% to
restore an episode form the failed episode buffer. As mentioned above, the difficulties of the
training samples evolve with the performance of the model, which makes it harder to visualize
the improvement from the training data. However, from Figure 43 we can see that the success
rate on the test environment increased continually.

Figure 40: Learning curve of the aver-
age episode length for every iteration.

Figure 41: Learning curve of the aver-
age episode return for every iteration.

Figure 42: Learning curve of the suc-
cess rate on training samples for every
iteration.

Figure 43: Learning curve of the suc-
cess rate on testing samples for every
iteration.

A ADDITIONAL WORK IN WORKPACKAGE 5 41

CENTAURO – 644839 D5.3 Driving Navigation

Figure 44: The five environment configurations used for testing. The environment 1 is used for
regular planning test and the environment 2, 3, 4, 5 are used for narrow passage test. The target
position of the environment 4 and 5 are above the obstacles.

Testing Results To evaluate the current performance of our model we designed two testing
scenarios: a narrow passage test and a regular planning test. We prepared four environments
for the narrow passage test and one environment for the regular planning test. The five environ-
ments are shown in Figure 44.

In the narrow passage test, the target position is 0.5m from the robot and space to reach to the
goal is narrow. The robot has to lift or shrink its body to pass the obstacles. The narrow passage
test is used to investigate whether the planner learned how to adjust the robot body posture based
on the observation. In every iteration, the robot orientation is randomly initialized. The regular
planning test is used to evaluate the overall planning performance. The testing environment is
similar to the training environment. It contains a flat ground of size 4 × 4m2 and 20 obstacles
with fixed positions. In every iteration the robot position is randomly generated and the target
position is 1m away from the robot. To be considered successful, the planner should navigate
the robot to the target position within 100 steps.

The regular planning test environment has some overlaps with our training data, however,
the narrow passage test environments are not in the training data. As we use only three tall
obstacles to train the model, there is no case like Environment 4, with seven tall obstacles at the
same time.

We tested 100 times for every environment and the average episode length and the success
rate is shown in Figure 45 and Figure 46. The robot accomplish most of the regular planning test
in Environment 1 with different initial and target settings. The results of the narrow passage test
in Environment 2 and 3 are successful, however, the Environment 4 and 5 are still challenging
as the robot needs to pass more than one obstacle to reach to the goal. From the result we show
that the model can successfully adapt to similar environment without additional training and has
the potential to generalize to unseen environments. However, the length of the episode is still
far from the optimal. Further improvements are needed to reduce the number of actions that
may cause collisions to the obstacles, and to increase the capability of generalization to new
environment.

A ADDITIONAL WORK IN WORKPACKAGE 5 42

CENTAURO – 644839 D5.3 Driving Navigation

Figure 45: The average episode length
in testing environments

Figure 46: The success rate in testing
environments

A.4.5 Connection to CENTAURO

The method mentioned above focus on the task of driving navigation with reconfigurable leg
postures. The method can be used as an alternative planner to suggest additional path to the
operator from the learning perspective. Future development will improve the path quality and
extend its capability from the simulated environment to the real world task.

A ADDITIONAL WORK IN WORKPACKAGE 5 43

CENTAURO – 644839 D5.3 Driving Navigation

References
[1] Sven Behnke. Local multiresolution path planning. In Robot Soccer World Cup, pages

332–343. Springer, 2003.

[2] Robert Bohlin. Path planning in practice; lazy evaluation on a multi-resolution grid. In
Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Confer-
ence on, volume 1, pages 49–54. IEEE, 2001.

[3] Michael Brunner, Bernd Brüggemann, and Dirk Schulz. Motion planning for actively
reconfigurable mobile robots in search and rescue scenarios. In IEEE International Sym-
posium on Safety, Security, and Rescue Robotics (SSRR), 2012.

[4] X. Chen, F. Schilling, T. Klamt, and P. Jensfelt. Deliverable D5.2 CENTAURO Terrain
Classification.

[5] Francis Colas, Srivatsa Mahesh, François Pomerleau, Ming Liu, and Roland Siegwart. 3D
path planning and execution for search and rescue ground robots. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2013.

[6] Brian P Gerkey and Kurt Konolige. Planning and control in unstructured terrain. In ICRA
Workshop on Path Planning on Costmaps, 2008.

[7] Kalin Gochev, Benjamin Cohen, Jonathan Butzke, Alla Safonova, and Maxim Likhachev.
Path planning with adaptive dimensionality. In Fourth annual symposium on combinato-
rial search, 2011.

[8] Adrián González-Sieira, Manuel Mucientes, and Alberto Bugarı́n. An adaptive multi-
resolution state lattice approach for motion planning with uncertainty. In Robot 2015:
Second Iberian Robotics Conference, pages 257–268. Springer, 2016.

[9] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D Wegner, Konrad Schindler, and
Marc Pollefeys. Semantic3d. net: A new large-scale point cloud classification benchmark.
arXiv preprint arXiv:1704.03847, 2017.

[10] Timo Hackel, Jan D Wegner, and Konrad Schindler. Fast semantic segmentation of 3d
point clouds with strongly varying density. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Prague, Czech Republic, 3:177–184, 2016.

[11] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[12] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion
behaviours in rich environments. arXiv preprint arXiv:1707.02286, 2017.

[13] Karl Holmquist, Deniz Senel, and Michael Felsberg. Computing a collision-free path
using harmonic potentials. In submitted to ICRA 2018, 2018.

[14] Thomas M Howard and Alonzo Kelly. Optimal rough terrain trajectory generation for
wheeled mobile robots. The International Journal of Robotics Research, 26(2):141–166,
2007.

REFERENCES 44

CENTAURO – 644839 D5.3 Driving Navigation

[15] P. Jensfelt, J. Folkesson, G. Meneghetti, M. Felsberg, and S. Behnke. Deliverable D5.1
CENTAURO Navigation Concept.

[16] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan Schaal.
Learning, planning, and control for quadruped locomotion over challenging terrain. The
International Journal of Robotics Research, 30(2):236–258, 2011.

[17] Tobias Klamt and Sven Behnke. Anytime hybrid driving-stepping locomotion planning.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

[18] C Kohrt, Anthony G Pipe, Janice Kiely, R Stamp, and G Schiedermeier. A cell based
voronoi roadmap for motion planning of articulated robots using movement primitives.
In Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on, pages
1542–1549. IEEE, 2012.

[19] J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng. A control architecture for quadruped
locomotion over rough terrain. In Proceedings - IEEE International Conference on
Robotics and Automation, 2008.

[20] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on, volume 2, pages 995–1001. IEEE, 2000.

[21] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

[22] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg, Goutam Bhat, Fahad Shahbaz
Khan, and Michael Felsberg. Deep projective 3d semantic segmentation, 2017.

[23] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In NIPS, 2003.

[24] Carlos Mastalli, Ioannis Havoutis, Alexander W. Winkler, Darwin G. Caldwell, and Clau-
dio Semini. On-line and on-board planning and perception for quadrupedal locomotion.
In IEEE Conference on Technologies for Practical Robot Applications, TePRA, 2015.

[25] Matteo Menna, Mario Gianni, Federico Ferri, and Fiora Pirri. Real-time autonomous
3D navigation for tracked vehicles in rescue environments. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014.

[26] Javier A Montoya-Zegarra, Jan D Wegner, L’ubor Ladickỳ, and Konrad Schindler. Mind
the gap: modeling local and global context in (road) networks. In German Conference on
Pattern Recognition, pages 212–223. Springer, 2014.

[27] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-road obstacle avoid-
ance through end-to-end learning. In Advances in neural information processing systems,
pages 739–746, 2006.

[28] Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. Terrain-adaptive locomotion
skills using deep reinforcement learning. ACM Transactions on Graphics (TOG), 35(4):81,
2016.

[29] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans-
actions on Graphics (TOG), 36(4):41, 2017.

REFERENCES 45

CENTAURO – 644839 D5.3 Driving Navigation

[30] Nicolas Perrin, Christian Ott, Johannes Englsberger, Olivier Stasse, Florent Lamiraux,
and Darwin G Caldwell. Continuous legged locomotion planning. IEEE Transactions on
Robotics, 33(1):234–239, 2016.

[31] Janko Petereit, Thomas Emter, and Christian W Frey. Mobile robot motion planning
in multi-resolution lattices with hybrid dimensionality. IFAC Proceedings Volumes,
46(10):158–163, 2013.

[32] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena. From
perception to decision: A data-driven approach to end-to-end motion planning for au-
tonomous ground robots. In Robotics and Automation (ICRA), 2017 IEEE International
Conference on, pages 1527–1533. IEEE, 2017.

[33] William Reid, Robert Fitch, Ali Haydar Göktoan, and Salah Sukkarieh. Motion Planning
for Reconfigurable Mobile Robots Using Hierarchical Fast Marching Trees.

[34] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and scalable robot
simulation framework. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-
national Conference on, pages 1321–1326. IEEE, 2013.

[35] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel,
Debadeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive
uav control in cluttered natural environments. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 1765–1772. IEEE, 2013.

[36] Fabian Schilling, Xi Chen, John Folkesson, and Patric Jensfeld. Geometric and visual
terrain classification for autonomous mobile navigation. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[38] James Sergeant, Niko Sünderhauf, Michael Milford, and Ben Upcroft. Multimodal deep
autoencoders for control of a mobile robot. In Australasian Conference for Robotics and
Automation (ARAS), 2015.

[39] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation. arXiv preprint arXiv:1703.00420,
2017.

[40] Jiexiong Tang, John Folkesson, and Patric Jensfelt. Geometric correspondence network
for motion estimation. In submitted to ICRA 2018, 2018.

[41] Paul Vernaza, Maxim Likhachev, Subhrajit Bhattacharya, Sachin Chitta, Aleksandr
Kushleyev, and Daniel D. Lee. Search-based planning for a legged robot over rough
terrain. In Proceedings - IEEE International Conference on Robotics and Automation,
2009.

[42] Martin Wermelinger, Péter Fankhauser, Remo Diethelm, Philipp Krüsi, Roland Siegwart,
and Marco Hutter. Navigation planning for legged robots in challenging terrain. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

REFERENCES 46

CENTAURO – 644839 D5.3 Driving Navigation

[43] Martin Wermelinger, PÃ c©ter Fankhauser, Remo Diethelm, Philipp Krüsi, Roland Sieg-
wart, and Marco Hutter. Navigation Planning for Legged Robots in Challenging Terrain.

[44] Alexander W Winkler, Carlos Mastalli, Ioannis Havoutis, Michele Focchi, Darwin G Cald-
well, and Claudio Semini. Planning and Execution of Dynamic Whole-Body Locomotion
for a Hydraulic Quadruped on Challenging Terrain.

[45] David Wooden, Matthew Malchano, Kevin Blankespoor, Andrew Howardy, Alfred A.
Rizzi, and Marc Raibert. Autonomous navigation for BigDog. In Proceedings - IEEE
International Conference on Robotics and Automation, 2010.

[46] Haojie Zhang, Jonathan Butzke, and Maxim Likhachev. Combining global and local plan-
ning with guarantees on completeness. In IEEE/RSJ International Conference on Robotics
and Automation (ICRA), 2012.

[47] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard.
Deep reinforcement learning with successor features for navigation across similar envi-
ronments. arXiv preprint arXiv:1612.05533, 2016.

[48] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and
Ali Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement
learning. In Robotics and Automation (ICRA), 2017 IEEE International Conference on,
pages 3357–3364. IEEE, 2017.

[49] Zahra Ziaei, Reza Oftadeh, and Jouni Mattila. Global path planning with obstacle avoid-
ance for omnidirectional mobile robot using overhead camera. In IEEE International
Conference on Mechatronics and Automation, 2014.

REFERENCES 47

Anytime Hybrid Driving-Stepping Locomotion Planning

Tobias Klamt and Sven Behnke

Abstract— Hybrid driving-stepping locomotion is an effective
approach for navigating in a variety of environments. Long,
sufficiently even distances can be quickly covered by driving
while obstacles can be overcome by stepping. Our quadruped
robot Momaro, with steerable pairs of wheels located at the end
of each of its compliant legs, allows such locomotion. Planning
respective paths attracted only little attention so far.

We propose a navigation planning method which generates
hybrid locomotion paths. The planner chooses driving mode
whenever possible and takes into account the detailed robot
footprint. If steps are required, the planner includes those.
To accelerate planning, steps are planned first as abstract
manoeuvres and are expanded afterwards into detailed motion
sequences. Our method ensures at all times that the robot stays
stable. Experiments show that the proposed planner is capable
of providing paths in feasible time, even for challenging terrain.

I. INTRODUCTION

Hybrid driving-stepping locomotion enables robots to tra-
verse a wide variety of terrain types. Application domains,
such as search and rescue and delivery services, pose con-
siderable navigation challenges for robots due to non-flat
grounds. Sufficiently flat terrain can be traversed by driving,
which is fast, efficient and safe, regarding the robot stability.
However, driving traversability is limited to moderate slopes
and height differences and obstacle-free paths. Stepping
locomotion requires only adequate footholds and, hence,
enables mobility in cases where driving is unfeasible. But
stepping is also slower and decreases the robot stability.

Most mobile ground robots use either driving locomotion
or stepping locomotion, and there exist path planning meth-
ods for both such locomotion modes independently [1]–[7].
Our mobile manipulation robot Momaro [8] (see Fig. 1),
however, supports both locomotion types due to its four
legs ending in steerable pairs of wheels. This unique design
allows omnidirectional driving on sufficiently flat terrain and
stepping to overcome obstacles. In contrast to purely walking
robots, Momaro is able to change its configuration of ground
contact points (which we will refer to as its footprint) under
load without lifting a foot. This enables motion sequences
for stepping that have large stability margins. Multiple plat-
forms that are capable of driving-stepping locomotion have
been developed [9]–[13], but planning which combines the
advantages of both locomotion types was addressed for none
of these.

All authors are with Rheinische Friedrich-Wilhelms-Universität
Bonn, Computer Science Institute VI, Autonomous Intelligent
Systems, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
klamt@ais.uni-bonn.de, behnke@cs.uni-bonn.de.
This work was supported by the European Union’s Horizon 2020
Programme under Grant Agreement 644839 (CENTAURO).

Fig. 1. Our hybrid wheeled-legged mobile manipulation robot Momaro is
capable of omnidirectional driving (left) and stepping (right).

In our previous work with Momaro [14], we demon-
strated semi-autonomous driving, 2D (x, y) path planning
and execution in a Mars-like environment accompanied by
manipulation tasks. In this work, we extend the driving path
planning method to incorporate the robot orientation θ and
its detailed footprint in order to increase driving flexibility.
We improve the path quality by introducing an orientation
cost term.

In addition, we demonstrated stepping over a wooden
bar obstacle, climbing stairs, and egressing a car with Mo-
maro at the DARPA Robotics Challenge (DRC) [15]. All
of the DRC tasks were performed via teleoperation based
on pre-defined motion sequences. Teleoperation depends on
a good data connection between the operator station and
robot and generates a high cognitive load for the operators.
Autonomous locomotion is desirable to relieve the operators
and to increase speed and safety.

We extend the locomotion planner to generate stepping
motions. Driving in difficult terrain and stepping require a
high planning resolution which increases planning times. To
keep the search space feasible, we first generate abstract steps
that we later expand to detailed motion sequences.
To summarize, the main contributions in this paper are:
• a three-dimensional (x, y, θ) driving path planning

method allowing driving in constrained uneven environ-
ments by consideration of the detailed robot footprint,

• the introduction of orientation costs, favoring a pre-
ferred driving direction to align the robot with the path,

• a hierarchical step planner, which generates detailed
manoeuvres to perform individual steps under the con-
straint to always keep the robot statically stable, and

• application of anytime planning to quickly find paths
with bounded suboptimality.

We demonstrate our approach in simulation and with
the real robot and systematically evaluate the effect of our
acceleration methods. The results indicate that our planner
provides paths in feasible time even for challenging tasks.

II. RELATED WORK

Path planning in unstructured terrain has been addressed
by many works. The considered systems provide either
purely wheeled/tracked locomotion or are able to traverse
terrain by walking. Planning is often done with either
grid-based searches, such as A* [16], or sampling-based
approaches, such as RRT [17]. Despite the application of
similar planning methods, these two locomotion modes differ
in many aspects.

Driving is fast and energy efficient on sufficiently flat
terrain, which makes it suitable for traversing longer dis-
tances. When supported by three or more wheels, the robot
is generally statically stable. Planning of drivable paths in
unstructured environments is heavily dependent on the de-
grees of freedom (DoF) of the platform. Simple robot designs
offer longitudinal and rotational movements with a constant
robot shape [18], [19]. For search and rescue scenarios, some
robots were extended by tracked flippers [1], [2], [3]. These
allow the robots to climb stairs and thus increase capabilities
but also planning complexity due to additional shape shifting
DoFs. Flipper positions are often not considered by the initial
navigation path planning and are adjusted to the terrain in
a second planning step. Platforms which offer omnidirec-
tional locomotion increase the path planning search space
by another dimension [4]. Driving is restricted, however, by
terrain characteristics such as height differences and slopes
which makes it not suitable for very rough terrain and for
overcoming obstacles.

Legged locomotion is capable of traversing more difficult
terrain since it only requires isolated feasible footholds. The
drawback of this locomotion mode is that motion planning
is much more complex. Since legs are lifted from the ground
repeatedly, the robot also has to constantly ensure that it re-
mains stable. Due to the high motion complexity of stepping,
path planning is often performed in at least two hierarchical
levels [5], [6], [7]. A coarse planning algorithm identifies
feasible footholds or areas for feasible steps. Detailed motion
planning is done in a second step to connect these footholds.
Navigation towards the goal is either included in the coarse
planning or realized in a higher-level planner.

Since both locomotion modes have complementary advan-
tages, it is promising to combine those. Halme et al. [9] and
Takahaashi et al. [10] developed quadruped robots with legs
ending in wheels. Control mechanisms to overcome obstacles
are presented, but locomotion planning is not addressed. The
hybrid locomotion robots HUBO [11] and CHIMP [12] were
used by the winning and the third best teams at the DARPA
Robotics Challenge. HUBO provides legged and wheeled
locomotion, but needs to shift its shape to switch between
those. Thus, hybrid locomotion, which combines advantages
of both locomotion types, is not possible. CHIMP provides
bipedal and quadruped hybrid locomotion. However, hybrid
locomotion planning is not presented. Finally, a bipedal
robot, capable of driving and walking, and a respective
planning algorithm is presented by Hashimoto et al. [13].
Depending on the terrain, it either chooses walking or driving

Fig. 2. Hybrid locomotion system structure: The hybrid path planner
searches an abstract path from start to goal pose. The step motion generator
expands this abstract path to a detailed path which can be executed by the
robot. A neighbour client provides neighbour states to the planner. Both, this
neighbour client and the step motion generator, request pose costs from the
cost client which generates costs out of the 2D height map. The resulting
path is executed by a controller.

mode. A combination of both, which might bring further
advantages, is not considered. Recently, Boston Dynamics
introduced its biped platform Handle1 with legs ending in
wheels. It demonstrated manoeuvres which require very good
dynamic control but path planning was not presented.

Our approach combines both locomotion modes in a single
planning algorithm and thus has many benefits of both.

III. HARDWARE

We use our quadruped robot platform Momaro [8]
(see Fig. 1) with articulated legs ending in directly-driven
360° steerable pairs of wheels. Those offer omnidirectional
driving and the possibility to change the robot footprint under
load which neither can be done by pure driving nor by pure
walking robots and enables novel movement strategies.

Each leg consists of three pitch joints which allow leg
movements in the sagittal plane. Lateral leg movements are
possible only passively. Legs show compliant behaviour due
to their elastic carbon composite links, which work as a
passive suspension system on rough terrain. Moreover, soft
foam-filled wheels compensate small terrain irregularities.

A continuously rotating Velodyne Puck 3D laser scanner
with spherical field-of-view at the robot head and an IMU
provide measurements for terrain perception.

IV. ENVIRONMENT REPRESENTATION

An overview of the planning system structure is given
in Fig. 2. Range measurements from the 3D laser scan-
ner are used for mapping and localization by utilizing a
multiresolution surfel map [20]. Input to the planner are
a 2D height map and the start and goal robot poses. A
robot pose ~r = (rx, ry, rθ, ~f1, ..., ~f4) includes the robot base
position rx, ry and orientation rθ and the foot positions
~fj = (fj,x, fj,y) in map coordinates. The grid resolution is
set to 2.5 cm with 64 possible orientations at each position.

1https://youtu.be/-7xvqQeoA8c

Fig. 3. Driving cost computation: a) Simulated scenario in which the
robot stands in front of a ramp, a small and a tall pole. b) Foot costs.
Yellow areas are not traversable by driving, olive areas are unknown.
c) Body costs. The robot can take the small pole between its legs while the
tall pole generates costs for lifting the robot body. Costs are shown for the
current robot orientation. d) Pose costs combine body costs and foot costs
at their respective positions.

The cost client computes pose cost values from the height
map for a robot pose as follows: From the height map, local
unsigned height differences 4H are computed to generate
the foot specific cost

CF(cj) = 1 + k1 ·
∑

ci∈map
4H(ci) · w(ci) (1)

where k1 = 100 and

w(ci) =

∞ if ‖ci − cj‖<rF ∧4H(ci)>0.05,

1− ‖ci−cj‖
rN

if ‖ci − cj‖<rN,

0 otherwise
(2)

for a map cell cj in which the foot ~fj is located. Foot
costs are assigned an infinite value if untraversable height
differences > 0.05 m occur in a surrounding of the size of
a foot (rF = 0.12 m). In a neighbourhood of greater size
(rN = 0.3 m), height differences are accumulated weighted
by their distance to cj . Foot costs are defined to be 1 in
flat surroundings and increase if challenging terrain occurs.
CF includes traversability information and describes the
surrounding of each foot position (see Fig. 3).

The robot shape allows obstacles to pass between the robot
legs. However, if obstacles are too high they might collide
with the robot base. The base cost

CB(~r) = 1+k2 ·max(Hmax,uB−HB, 0)+k3 ·4Hmax,F, (3)

where k2 = 1 and k3 = 0.5 compares the maximum terrain
height under the robot body Hmax,uB with the body height
HB and assigns additional costs if the space is not sufficient.
In addition, the height difference between the lowest and

Fig. 4. Driving locomotion neighbour states can either be found by
straight moves with fixed orientation within a 16-neighbourhood (l.) or by
orientation changes on a fixed position (r.). Grid and orientation resolution
are enlarged for better visualization.

highest foot 4Hmax,F generates costs since this is a measure
for the terrain slope under the robot. Again, the basic cost is
1 which increases for challenging terrain. The robot base is
estimated by two circles of 0.25 m radius to avoid expensive
detailed collision checking.

All cost values are combined into the pose cost

C(~r) = k4 ·max
j

(CF(~fj))+k5 ·
4∑

j=1

CF(~fj)+k6 ·CB(~r), (4)

where k4 = 0.1, k5 = 0.1 and k6 = 0.5. Pose costs are
defined to be 1 on flat terrain where both, foot and body
costs, induce 50% of the pose costs. We want to consider
the terrain under all four wheels but want to prefer a pose
with four slightly challenging contact points over a pose with
three non-challenging and one very difficult contact point.
Hence, it is neither sufficient to sum up all individual foot
costs nor to just take the maximum. A weighted sum of both,
however, achieves the desired functionality.

V. PATH PLANNING

Path planning is done in a hybrid planner, which prefers
the driving mode and considers steps only if necessary. It
is realized through an A*-search on a pose grid. The used
heuristic combines the Euclidean distance with orientation
differences. For each pose, the path planning neighbour client
provides feasible neighbouring poses (see Fig. 2). Driving
neighbours can be found within a 16-neighbourhood and by
turning on the spot to the next discrete orientation (Fig. 4).

As illustrated in Fig. 5, additional stepping manoeuvres
are added, if a foot ~fj is
• close to an obstacle(
∃c ∈ map

(
CF(c) =∞∧

∥∥∥c− ~fj

∥∥∥ < 0.1 m
))

,
• a feasible foothold ch with CF(ch) <∞ can be found

in front of the foot in its sagittal plane that respects a
maximum leg length,

• the height difference to the foothold is small
(|H(~fj)−H(ch)| ≤ 0.3m), and

• the distance between the two feet on the “non-stepping”
robot side is > 0.5 m to guarantee a safe stand while
stepping.

A step is represented as an additional possible neighbouring
pose for the planner.

The step which is considered by the planner at this level
is an abstract step. We define an abstract step to be the direct
transition from a pre-step pose to an after-step pose. It does

Fig. 5. Criteria to add steps to the hybrid planner: a) A foot is close to
an obstacle, b) a feasible foothold can be found, c) the height difference
to overcome is ≤ 0.3 m and d) the distance between the feet on the “non-
stepping” robot side is > 0.5 m. Grey areas show an elevated platform.

Fig. 6. Manoeuvres which extend the driving planner to a hybrid
locomotion planner, visualized on a height map: a) Abstract steps, b)
longitudinal base shifts, c) driving a pair of wheels at one front foot forward,
and d) driving a pair of wheels at any foot back to its neutral position.

not describe the motion sequence to perform the step and
needs to be expanded to be stable and executable by the
robot. An abstract step is visualized in Fig. 6a.

Each step is assigned a cost value

CS = k7 · Lstep + k8 · (CF (ch)− 1) + k9 · 4Hstep, (5)

where k7 = 0.5, k8 = 0.1 and k9 = 2.3 which includes the step
length Lstep, the foot specific terrain difficulty costs of the
foothold to step in ch, and the maximum height difference
4Hstep. If multiple end positions for a step exist, only the
cheapest solution is returned to the search algorithm.

Further manoeuvres are required to navigate in cluttered
environments. We define the footprint shown in Fig. 5a to
be the neutral footprint. It provides high robot stability at
a small footprint size, and is the preferred configuration for
driving.

If both front feet are positioned in front of their neutral
position, the robot may perform a longitudinal base shift
manoeuvre. The base is shifted forward relatively to the feet
until one of the front feet reaches its neutral position or
a maximum leg length is reached for one of the rear legs
(see Fig. 6b). Base shifts of length LBS using the average
discovered base costs CB,avg and k10 = 0.5 carry the cost

CBS = k10 · LBS · CB,avg. (6)

If a rear foot is close to an obstacle, the pair of wheels at
each front foot may be driven forward while keeping ground
contact (Fig. 6c) which is a preparation for a rear foot step.
If the robot footprint is not neutral, it may drive a single pair
of wheels to their neutral position (Fig. 6d). A single foot
movement of length LFM using the average discovered foot
costs CF,avg and k11 = 0.125 carries the cost

CFM = k11 · LFM · CF,avg. (7)

Since driving is faster and safer than stepping, we want
the planner to consider drivable detours of acceptable length

Fig. 7. Step-related manoeuvre costs are weighted such that the planner
just prefers taking a 1.5 m detour over a ramp (blue path) instead of stepping
up (red path) to an elevated platform.

instead of including steps in the plan. We define that, when
the robot stands in front of an 0.2 m elevated platform, it
should prefer a 1.5 m long detour over a ramp instead of
stepping up to this platform (Fig. 7). This can be achieved
by increasing the costs of stepping-related manoeuvres by a
certain factor.

VI. STEP MOTION GENERATION

The result of the A* search is a cost-optimal abstract
path which lacks executable motion sequences for steps
and information about foot heights. The resulting path is
expanded during step motion generation. It finds stable robot
positions for steps and adds leg height information to the
path. Again, costs are obtained from the cost client.

A. Robot Stabilization

Abstract steps only describe the start and goal poses for a
stepping manoeuvre. An executable transition between these
poses is a motion sequence which keeps the robot stable at all
times. Such a motion sequence is generated for each abstract
step in the path. Due to the compliant leg design of our robot,
we have no information about the exact position of the feet
but have to estimate it from actuator feedback. Hence, we
limit stability considerations to static stability. Since actuator
speeds are slow, dynamic effects can be neglected. Stability
estimation while stepping is done on the support triangle
which is spanned by the horizontal position of the remaining
three feet with ground contact (Fig. 8). If the horizontal
robot center of mass (CoM) projection is inside the support
triangle, the robot pose is stable. The closer the CoM is to
the support triangle centroid (STC), the greater the stability.

Lateral alignment of the CoM and STC is done by base roll
motions (Fig. 8), which are rotations around the longitudinal
axis. These are achieved by changing the leg lengths on one
side of the robot. The resulting angle between the wheel
axes and ground is compensated by the compliant legs and
the soft-foam filled wheels. Roll manoeuvre parametrization
is described in Sec. VI-B.

Longitudinal alignment of the CoM and STC is done
by driving the remaining pair of wheels on the stepping
side (e.g., the rear left foot if the front left foot is step-
ping) towards the robot center (Fig. 8). If this does not
suffice because the motion is hindered by obstacles, the
remaining longitudinal alignment is done by shifting the

Fig. 8. To find a stable position for stepping, the robot CoM (red dot)
needs to be aligned with the STC (green dot). Lateral alignment is done by
base rolling. Longitudinal alignment is either done by rolling the remaining
foot on the stepping side towards the center (a) or by shifting the robot base
(b).

robot base. The longitudinal CoM position is also affected
by the robot base pitch angle which is described in the
next subsection. The presented motions generate a stable
robot configuration which allows the desired step to be
performed. After stepping, the robot reverses its base roll,
foot displacement, and base shift manoeuvres to get back to
its nominal configuration.

B. Leg Heights

Each robot pose is assigned an individual height for each
leg, which describes the vertical position of a foot relative
to the robot base. When driving with neutral footprint, a low
leg height of 0.27 m is chosen, which provides a low CoM
and good controllability through reduced leg compliance
(see Fig. 1 left). A larger ground clearance is chosen for
manoeuvres other than driving to provide great freedom for
leg movements (see Fig. 1 right). In this case, the base height
is determined by the highest foot. A soft constraint is applied
that the leg height should be at least 0.45 m. At the same
time, a hard constraint from the mechanical system is that
none of the legs exceeds its maximum leg length. The height
of each individual foot can be read from the 2D height map.
The robot base pitching angle is set to be 70% of the ground
slope, as can be seen in Fig. 19. This pitching value provides
a good compromise between sufficient ground clearance for
all four legs and a good CoM position.

As described before, base roll manoeuvres are used to
shift the robot CoM laterally. Due to the soft-foam filled
wheels, we can estimate the center of rotation R(y′rot, z

′
rot)

between the two wheels (Fig. 9). In addition, the center of
mass position C(y′CoM, z

′
CoM), the angle

α = arctan
(
y′rot − y′CoM

z′CoM − z′rot

)
(8)

between ~RC and the vertical axis and the desired lat-
eral center of mass position y′CoM,des are given. Using∥∥∥ ~RC

∥∥∥ =
∥∥∥ ~RCdes

∥∥∥ we compute the desired angle between
~RCdes and the vertical axis

αdes = arcsin

y
′
rot − y′CoM,des∥∥∥ ~RC

∥∥∥

 (9)

Fig. 9. Momaro’s lower body in back view. Lateral CoM shifts can be
achieved by changing leg length on one side which rolls the robot.

and consequently using the footprint width b we compute the
desired leg height difference

4hleg = b · tan(α− αdes). (10)

This leg height difference is added to both legs on the
respective side to induce a base roll manoeuvre. Fig. 10
shows how Momaro steps up an elevated platform, using
the described motion sequences.

VII. PATH PLANNING EXTENSIONS

Due to the fine position and orientation resolution, the
search space which is considered for path planning is large.
Moreover, we want the planner to consider several detours
before taking a step, which further increases planning times.
We present methods to accelerate planning and to improve
the resulting path quality. Their individual effects are inves-
tigated during evaluation.

A. Robot Orientation Cost

Although our robot is capable of omnidirectional driving,
there are multiple reasons to prefer driving forward. Since
the sensor setup is not only used for navigation, but also
for manipulation, it is designed to provide best measurement
results for the area in front of the robot. The required width
clearance is minimal when driving in a longitudinal direction,
which is helpful in narrow sections such as doors. The same
applies to driving backwards. Driving straight backwards
requires a smaller clearance than driving diagonal backwards.
Finally, our leg design restricts us to perform steps in the
longitudinal direction. Thus, when approaching areas where
stepping is required, a suitable orientation is helpful. We
address this desire of preferring special orientations by mul-
tiplying neighbour costs during A* search by the individual
factor k4θ, as described in Fig. 11.

B. ARA*

To obtain feasible paths quickly, we extend the A* algo-
rithm to an Anytime Repairing A* (ARA*) [21]. Its initial
search provides solutions with bounded suboptimality by
giving the heuristic a weight > 1. The result quality is
then improved by decreasing the heuristic weight stepwise
down to 1, if the given planning time is not exhausted yet.
ARA* recycles the representations it generated previously to
accelerate replanning.

Fig. 10. Momaro stepping up an elevated platform. a) It arrives at the platform in low driving position, b) stands up, c) rolls its base to the left to shift
its CoM laterally, d) drives its rear right pair of wheels forward to reach a stable stepping configuration. e) It then steps with its front right foot, f) drives
its rear right pair of wheels back and g) rolls back its base to reach the configuration it had before the step. The remaining steps follow a similar motion
sequence which is shown in less details. Subsequently, h) Momaro steps with its front left foot. i) It then drives forward and j) shifts its base forward
before k) doing a step with the rear left and l) rear right foot. m) When the robot stands on the platform, n) it lowers its base to continue driving.

Fig. 11. For a difference between robot orientation and driving direction
4θ the cost factor k4θ is computed which expresses the desire to drive
forward. It is 1 within an orientation step of 2π/60 and increases up to
k12. When driving backward, there is a desire to drive straight backwards
since the required clearance is smaller.

Fig. 12. Adressing ARA* preferences of long moves. a) For larger heuristic
weights, the ARA* algorithm prefers those driving manoeuvres which bring
the robot as close to the goal as possible which leads to undesired paths
(black arrows). b) To obtain the desired behaviour (blue line) we extend the
driving neighbourhood by the four red manoeuvres.

When planning with higher weighted heuristics, the plan-
ner prefers those driving manoeuvres that bring it as close to
the goal as possible. This leads to the undesired effect that
resulting paths mainly consist of those driving manoeuvres
which go two cells in one direction and one cell in an
orthogonal direction, as can be seen in Fig. 12 a. To prevent
this behaviour, we extend the driving neighbourhood size
from 16 to 20, as shown in Fig. 12 b.

VIII. PLAN EXECUTION

We utilize the control framework described by Schwarz
et al. [15]. Input for omnidirectional driving is a velocity
command ~w = (vx′ , vy′ , ω) with horizontal linear velocities
vx′ and vy′ in robot coordinates and a rotational velocity ω
around the vertical robot axis. We obtain ~w by computing a
B-spline through the next five driving poses and aim towards
a pose ~p = (px, py, pθ) on this B-spline in front of the robot.

For manoeuvres which require leg movement, the input to
the control framework are 2D (x′, z′) foot poses which can
be directly derived from the resulting path.

IX. EXPERIMENTS

We evaluate our path planning method and the presented
extensions in the Gazebo simulation environment2. Experi-
ments are done on one core of a 2.6 GHz Intel i7-6700HQ
processor using 16 GB of memory. A video of the experi-
ments is available online3.

In a first scenario, the robot stands in a corridor in front of
an elevated platform and some cluttered obstacles. It needs
to find a way to a goal pose on this platform as can be
seen in Fig. 13. We compare the performance of the planner
for different values of k12 in Fig. 14. The parameter k12 is
defined in Fig. 11. All shown path costs are the costs the path
would have in the plain A* planner to keep them comparable.
It can be seen that an increasing robot orientation cost
factor decreases the difference between robot orientation and
driving direction. This can also be observed in Fig. 16.
Moreover, planning is accelerated for higher values (≥ 2)
of k12, while path costs increase only slightly.

In addition, we evaluate the ARA* approach in the
same scenario. We choose exponentially decaying heuristic

2http://www.gazebosim.org
3https://www.ais.uni-bonn.de/videos/IROS_2017_

Klamt/

Fig. 13. Gazebo scenario to compare planner variants. Momaro stands in
front of an elevated platform, cluttered with obstacles and has to reach a
pose on this platform.

Fig. 14. Comparison between the original A* planner (k12 = 1) and the
modification with robot orientation cost factor.

weights, starting at 3.0 while k12 = 2. The performance
results are shown in Fig. 15 and a path can be seen in Fig. 16.
ARA* provides its first result in 32 ms, and this is 31%
more costly than the optimal solution. A solution with only
2% higher costs is found in ~10 s which is sufficiently
fast compared to the required execution times. Planning
paths using an optimal heuristic weight takes infeasibly long
(> 100 s). Searching optimal results takes longer than in
the plain A* variant because higher heuristic weights are
considered first and the neighbourhood size changed from 16
to 20. It can be seen that the effect of the robot orientation
cost factor increases with decreasing heuristic weights.

To demonstrate the capabilities of our planner, we present
a second experiment in which Momaro has to climb a
staircase which is blocked by obstacles (Fig. 17). Tracked
vehicles would have great difficulties to overcome this. Our
robot climbs the stairs and then drives sideways while taking
the obstacle between its legs. Our planner finds a first path
with heuristic weight of 3.0 in 1.02 s. Fig. 19 shows Momaro
on the staircase and visualizes how the robot base adapts its
pitch angle to the terrain slope.

Fig. 15. Performance and result quality of the ARA* algorithm where
k12 = 2.

Fig. 16. Resulting paths of our planner in different settings on a foot cost
map. Yellow areas are not traversable by driving. Blue paths show the robot
center position, arrows show the orientation. Blue rectangles show used
footholds. Red lines represent front foot steps, green lines represent rear
foot steps. a) Result of the plain A* algorithm, b) orientation differences
are considered (k12 = 2), c) first result of the ARA* algorithm using a
heuristic weight of 3.0.

Fig. 17. Challenging scenario to demonstrate the planner capabilities. A
staircase with obstacles on it requires a combination of stepping and driving
sideways.

Fig. 18. Planner output for the staircase scenario on a foot cost map using
a heuristic weight of 3. The blue path shows the robot center position.
Arrows show the robot orientation. Blue squares show used footholds. Red
lines represent front foot steps; green lines represent rear foot steps.

X. CONCLUSION

In this paper, we presented a hybrid locomotion planning
approach which combines driving and stepping in a single
planner. It provides paths with bounded suboptimality in
feasible time and is capable of path planning in challenging
environments. Due to the high dimensionality of the search
space and the desire to consider detours instead of stepping,
finding optimal solutions may take considerable time. We
address this by using an anytime approach with larger heuris-
tic weights. The planned paths are executed by our mobile
manipulation robot Momaro. Experiments demonstrated that
our method generates paths for challenging terrain, which
could not be traversed by driving or stepping alone.

REFERENCES
[1] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart, “3D

path planning and execution for search and rescue ground robots,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2013.

[2] M. Menna, M. Gianni, F. Ferri, and F. Pirri, “Real-time autonomous
3D navigation for tracked vehicles in rescue environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2014.

[3] M. Brunner, B. Brüggemann, and D. Schulz, “Motion planning for
actively reconfigurable mobile robots in search and rescue scenarios,”
in IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2012.

[4] Z. Ziaei, R. Oftadeh, and J. Mattila, “Global path planning with
obstacle avoidance for omnidirectional mobile robot using overhead
camera,” in IEEE International Conference on Mechatronics and
Automation, 2014.

[5] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal,
“Learning, planning, and control for quadruped locomotion over
challenging terrain,” The International Journal of Robotics Research,
vol. 30, no. 2, pp. 236–258, 2011.

Fig. 19. Momaro climbing stairs. The robot base pitch angle adapts to
70% of the terrain slope.

[6] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart,
and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016.

[7] N. Perrin, C. Ott, J. Englsberger, O. Stasse, F. Lamiraux, and
D. G. Caldwell, “Continuous legged locomotion planning,” IEEE
Transactions on Robotics, vol. 33, no. 1, pp. 234–239, 2016.

[8] M. Schwarz, T. Rodehutskors, M. Schreiber, and S. Behnke, “Hybrid
driving-stepping locomotion with the wheeled-legged robot Mo-
maro,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2016.

[9] A. Halme, I. Leppänen, J. Suomela, S. Ylönen, and I. Kettunen,
“Workpartner: Interactive human-like service robot for outdoor ap-
plications,” The international journal of robotics Research, vol. 22,
no. 7-8, pp. 627–640, 2003.

[10] M Takahaashi, K. Yoneda, and S. Hirose, “Rough terrain locomotion
of a leg-wheel hybrid quadruped robot,” in IEEE International
Conference on Robotics and Automation (ICRA), 2006.

[11] H. Bae, I. Lee, T. Jung, and J.-H. Oh, “Walking-wheeling dual
mode strategy for humanoid robot, DRC-HUBO+,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016.

[12] A. Stentz, H. Herman, A. Kelly, E. Meyhofer, G. C. Haynes,
D. Stager, B. Zajac, J. A. Bagnell, J. Brindza, C. Dellin, et al.,
“Chimp, the CMU highly intelligent mobile platform,” Journal of
Field Robotics, vol. 32, no. 2, pp. 209–228, 2015.

[13] K. Hashimoto, T. Hosobata, Y. Sugahara, Y. Mikuriya, H. Sunazuka,
M. Kawase, H.-o. Lim, and A. Takanishi, “Realization by biped leg-
wheeled robot of biped walking and wheel-driven locomotion,” in
IEEE International Conference on Robotics and Automation (ICRA),
2005.

[14] M. Schwarz, M. Beul, D. Droeschel, S. Schüller, A. S. Periyasamy,
C. Lenz, M. Schreiber, and S. Behnke, “Supervised autonomy for
exploration and mobile manipulation in rough terrain with a centaur-
like robot,” Frontiers in Robotics and AI, vol. 3, 2016.

[15] M. Schwarz, T. Rodehutskors, D. Droeschel, M. Beul, M. Schreiber,
N. Araslanov, I. Ivanov, C. Lenz, J. Razlaw, S. Schüller, D. Schwarz,
A. Topalidou-Kyniazopoulou, and S. Behnke, “NimbRo Rescue:
Solving disaster-response tasks through mobile manipulation robot
Momaro,” Journal of Field Robotics, vol. 34, no. 2, pp. 400–425,
2016.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107,
1968.

[17] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[18] B. P. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in ICRA Workshop on Path Planning on Costmaps, 2008.

[19] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory
generation for wheeled mobile robots,” The International Journal
of Robotics Research, vol. 26, no. 2, pp. 141–166, 2007.

[20] D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping
and localization for autonomous navigation in rough terrain using
a 3D laser scanner,” Robotics and Autonomous Systems, vol. 88,
pp. 104–115, 2017.

[21] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime A* with
provable bounds on sub-optimality.,” in NIPS, 2003.

Computing a Collision-Free Path using Harmonic Potentials

Karl Holmquist1 and Deniz Şenel2 and Michael Felsberg1

Abstract— Mobile robots require various functionalities for
freely moving in environments containing both static and
dynamic obstacles. One of the most relevant capabilities in
terms of navigating a mobile robot in such an environment
is to find the safest path. This paper addresses the problem of
finding a collision-free path for a mobile robot in two steps.
First, the tessellation of the environment map represents it as a
graph. Second, the local features of the map obtained from its
monogenic scale space, creates a potential field that provides
the distinction of obstacles and safe areas.

I. INTRODUCTION

Many mobile robot applications require planning of a
safe path that leads a robot to a goal position from a
starting point. A common duty of a mobile robot is to
navigate through an indoor environment [1]. The task can
be vacuum cleaning of an apartment, delivery of items in
hospitals, schools, libraries, supermarkets, surveillance, etc.
In all of these applications, the challenge is to design the
algorithm that generates an obstacle-free path from a robot’s
start position to a target position. Such planning includes
intermediate steps as building the map of the environment
[2], finding an obstacle free path to the target position, and
optionally optimization of the path.

This paper proposes a method to compute obstacle-free
paths using Riesz potentials. First, tessellation of the map
of an environment is performed so that the environment is
split such that there are no concave objects. Next, in order
to preserve the complete information about the environment
after splitting it into rectangles, we create a graph repre-
sentation of the map using the adjacency of the rectangles.
Existence of edges is determined according to existence of
an opening that connects two rectangles such as a door.
An example tessellation and graph representation of an
indoor environment can be seen in Fig. 2. Potential field
is generated for all nodes of the graph using the monogenic
scale space. Lastly, using the potential values, a collision-
free path is generated towards the goal position. All steps of
the algorithm can be seen from Fig. 1.

There exist various methods in the literature for mobile
robot path planning purposes and each method has its own
strengths and weaknesses. Potential field methods have been
very popular and widely used for path planning applications
[3], [4], [5]. There are also sampling based methods that
use a grid map of the environment [6], [7], [8]. Another

1Karl Holmquist and Michael Felsberg are with the Department of
Electrical Engineering, Computer Vision Laboratory, Linköping University,
Sweden karl.holmquist@liu.se

2Deniz Şenel is a visiting researcher with the Department of Electrical
Engineering, Computer Vision Laboratory, Linköping University, Sweden
deniz.sevis@boun.edu.tr

popular technique is the combination of potential values and
grid map of the environment as in [9], [10]. Our method
does not generate a set of paths to follow in the map as
in [9], instead it calculates the complete field for a region
allowing fast calculation of path from any position. This
allows for applying a motion model or use of a momentum
based gradient descent approach to find a smooth trajectory
for the robot to follow. An explicit creation of grids of
the environment is also not necessary. Since we perform
tessellation by finding the largest possible rectangles, we
can save computational resources when compared to creating
grids of the environment.

Fig. 1: Flow chart of the proposed algorithm.

Another approach which is commonly used in diverse
areas is the A∗-algorithm [11]. This algorithm explores a
state-space, by using a heuristic over which direction is
the most beneficial to explore first while trying to find the
most cost-efficient path to the terminal state. However, the
shortest path is often dangerous, since it will pass close
to obstacles. A comparison between our proposed method
and a A∗ implementation has been done and the effect
of augmenting the heuristic of the A∗-algorithm with the
potential field generated by using the monogenic scale space
is also presented.

The safest path is defined as the path which keep the
maximal distance to obstacles. While if multiple solutions

exist, the shortest path in an euclidean sense is chosen.
This will allow robot to navigate even when the positioning
system has a low precision both in the ego localization and
in the map.

The paper is organized as follows: Next section describes
some of the theoretical background. The proposed method
is explained in detail in Section III. Simulation results are
presented in Section IV. Finally, in section V, the paper is
concluded with some discussion.

II. MATHEMATICAL BACKGROUND

Scale-space theory is a framework that is used for multi-
scale representation of image structures which is parameter-
ized by the power of the kernel function. α-scale spaces are
generated by the αth power of the negative Laplace operator
and as introduced in [12] a special case is the Poisson
scale space. It has multiple advantages over Gaussian scale
spaces as stated in [13]. Further, its analytic formulation is
known [14] and uncertainty of the Poisson kernel is close
to the optimum [15]. Based on the Poisson scale space,
the monogenic scale space, which is a vector valued scale
space, can be implemented. The monogenic signal is an
image analysis technique and 2-dimensional generalization
of the analytic signal that is introduced in [16] and provides
local amplitude and local phase features of the signal as
well as the local orientation [13]. It is widely used in image
processing and computer vision applications, e.g. for optical
flow calculation.

The monogenic scale space is a vector valued extension of
the Poisson scale space. The Poisson scale space is directly
related to potential theory as the generator for the scale space
is defined as −∇ · h2 rather than as in the Gaussian scale
space ∆ = ∇ ·∇. The h2 term is the convolution kernel of the
Riesz transform. The Riesz transform is a generalization of
the Hilbert transform and is used for extending the Poisson
scale space to the monogenic scale space [13]. The mono-
genic scale space separates the image into two conjugate
spaces, the signal at scale s (the Poisson scale space) and
the flux of the signal corresponding to the direction and
magnitude of the flow of the potential field at scale s [12].

The monogenic signal is, if computed using the Discrete
Fourier Transform (DFT), subject to periodic extensions
of the original signal since the DFT considers discrete
frequencies. In order to compensate for this [13] describes
the monogenic scale space on a bounded domain. This
description of the monogenic scale space adds Neumann
boundary conditions to the signal, which enforce that the
flow perpendicular to the border of the domain, ∂Ω is zero.

∂u
∂ s
|∂Ω = 0. (1)

Given a rectangle [0,w]× [0,h] where w and h correspond
to width and height, respectively, containing the signal
f (x,y), the Monogenic scale space u(x,y,s) is calculated as:

u(w,h)(x,y,s) =
∞

∑
m=0

∞

∑
n=0

(∫ w

0

∫ h

0
f (x′,y′)lmn(x′,y′)dx′dy′

)

× lmn(x,y)e
−
√
(nπ

h)
2
+(mπ

w)
2
s (2)

With lmn is given by:

lmn(x,y) =
2cos

(mπx
w

)
cos
(nπy

h

)
√

wh
. (3)

This transform can be implemented efficiently by using
Discrete Cosine Transform (DCT) and Discrete Sine Trans-
form (DST).

III. PATH PLANNING METHOD

In this work, the goal is to find an obstacle-free path
such that a mobile robot can travel from a starting position
to a goal position in an indoor environment using the
potential field generated using the monogenic scale space
representation of the map of the environment. The map is
represented by a binary image indicating the free space and
obstacles, such as walls. Since it is represented as an image it
will inherently be quantized into a grid representation. The
map may have been created earlier by a robot surveying
the area or it might be based on an architectural floor map
of the area. In this study, simulations are performed on an
artificial map. However, the proposed method can easily be
adapted to a real map of an environment. An example map of
an indoor environment with boundary and walls represented
using black solid lines are illustrated in Fig. 2a.

(a) An example map (b) Graph representation of the
map

Fig. 2: Tessellation of an example map with maximal rect-
angles and its graph representation

A. Tessellation of the Environment

In this step, tessellation of the environment with rectangles
is performed using the map in order to be able to represent
it as a graph. The tessellation of the environment is done to
create a representation such that its areas do not contain any
concave objects. Those cause problems in the potential field
representation as they produce local minima.

The tessellation of the environment is done iteratively
starting from a known starting position or an arbitrary
position on the map. Starting from this position, a rectangle
is fitted to the obstacle-free area by first finding the maximum

length of the required rectangle and then expanding its
height until the maximum height is found. From this initial
rectangle, the openings in which the border of the rectangle
does not correspond to a wall is seen as openings. These
openings serve as new points from where new rectangles
should be created. The area inside of the found rectangles
are excluded from the map in order to avoid new rectangles
to overlap with already found ones.

Tessellation of the environment using rectangles can be
seen in Fig. 2a where the rectangles are denoted by dashed-
dotted lines. The tessellation can also be done in an obstacle
free map and later applied to the same map with obstacles,
c.f. Fig. 3a and Fig. 5a

B. Graph Representation of the Environment

Since the tessellation is splitting the environment into
small parts, the complete information of the map is lost
unless the connections between the rectangles are main-
tained. The connections between rectangles in the map are
represented by a set of nodes and their edges which form an
undirected graph, possibly containing cycles. This graph is
built during the tessellation using the information from the
connections between rectangles.

Using the tessellation performed in the previous step,
the environment can be represented as a graph while each
rectangle corresponds to a node of a graph. Existence of
an edge can be determined according to the separation of
the rectangles. For example, if there is a wall between two
consecutive rectangles of a map, then we classify those
nodes as disconnected. If there is an opening between two
rectangles like a door on a wall, then two nodes are said to
be adjacent and there exists an edge between them.

In Fig. 2, an artificially created map and its graph rep-
resentation are given to demonstrate the process. The map
is tessellated using large rectangular regions since they are
convex. There is also an simple analytical expression of the
monogenic scale space on a rectangular region which allows
an efficient implementation, see section II. These rectangular
regions are considered as nodes of a graph. There exist an
edge between two nodes if the regions are connected, namely
there is a passage available that the robot can pass through
like a door. Otherwise, they are disconnected like rooms
separated via a wall. For example, according to map given
in Fig. 2a, rooms 1 and 2 are separated by a wall hence the
nodes 1 and 2 are disconnected also in Fig. 2b. However,
rooms 1 and 4 are connected via a door. Therefore, there
exists an edge between nodes 1 and 4 in Fig. 2b.

C. Finding and Calculating the Path

The goal is to find the path that leads a robot to the goal
position, namely starting from a node of the environment
graph we try to find the path that ends at the terminal node
of the graph. After deciding the collection of edges leading
to the terminal node, we calculate the exact path that the
robot must follow to reach its goal position by following the
increment of the potential values.

1) Finding a Path in the Graph: Since the optimality of
this path is of little concern when navigating a hazardous
environment, it is sufficient to find a path connecting the two
nodes in the graph. As such, the path is found by a simple
depth first search while avoiding revisits to previously visited
nodes. In the case of Fig. 2, assuming that the robot is at
room one in Fig. 2a which corresponds to node 1 in Fig. 2b
and the goal is in room 5. Then, the path would be the one
with the starting node 1 and end at node 5 through node 4,
namely 1→ 4→ 5.

2) Calculating the Path Inside Each Node: The second
part of the path planning problem is to find a safe path in
each node, entering and exiting at the openings which leads
to the correct adjacent node. This is done by interpreting
the area as a 2D-signal and calculating the monogenic
scale space for a certain scale. The monogenic signal, as
a generalization of the analytical signal provides features
like local amplitude, local phase, and local orientation which
are point-wise orthogonal [13]. It is shown that, α−scale
space corresponds to Poisson scale space for the case where
α = 0.5 in [12]. Poisson scale-space must be considered
as a potential problem instead of a heat problem since
isotopes within the Poisson scale-space corresponds to equi-
potential curves of Riesz potentials and the isophotes within
the conjugate Poisson scale-space correspond to flow lines
[12].

Using the gray-scale image representation of the environ-
ment map, a potential field is generated by calculating the
monogenic signal of the image at scale s. The monogenic
signal at a certain scale corresponds to a low-pass filtered
version of the original signal. However, since it uses a
Poisson kernel rather than a Gaussian kernel it corresponds
to the potential field rather than the heat dissipation which
is the case for Gaussian kernels. This field can directly be
used for finding a path through the environment by following
the direction of increasing potential since the goal is defined
as a source with the highest potential and the obstacles are
the sinks with lower potentials depending on the size of the
obstacles.

By creating a potential source in the exit and sinks at
the position of the obstacles, the monogenic signal can be
calculated for a fixed scale. The scale should be chosen so
that the source may affect the intensity of the whole image
but before the entire image becomes homogeneous.

IV. SIMULATIONS AND RESULTS

First, in this section we apply the proposed method to a
scenario where the mobile robot navigates through rooms to
reach its goal position. For this purpose, artificially created
maps are used. Two different scenarios are considered:
obstacle-free rooms and rooms with obstacles. Secondly, the
first map is used to compare a direct approach of finding
a path using the A∗-algorithm [11]. As well as applying a
modified A∗-algorithm on the generated Riesz potential field.

In the first example given in Fig. 3, the starting position of
the robot is the upper left corner of the top room while the
terminal position is in the middle of the bottom right room

on the map in Fig. 3a. Unvisited rooms are left dark since no
potential field has been calculated in these. The calculated
path can be seen in Fig. 3a, indicated by a black line. As an
example, the potential map of the last room in the path is
visualized as a surface plot in Fig. 3b. The marked position
in Fig. 3b is the starting position in that room. The original
map before creating the potential field can be seen in Fig. 4.
Here white lines correspond to walls.

(a) Environment map with calcu-
lated obstacle-free path

-2

160

140

-1.98

120

100

-1.96

80

60

-1.94

40

140

120

100
20

80

-1.92

60

40

200
0

-1.9

-1.88

X: 35

Y: 76

Z: -1.946

(b) Potential values within the last
room.

Fig. 3: First scenario: obstacle-free rooms.

Fig. 4: Map of obstacle free environment.

In the second example, there are obstacles placed in some
rooms which can be seen as darker areas in the potential
maps of the room in Fig. 5a. Corresponding potential values
of the last room is given in Fig. 5b. Again, the starting
position is the left corner of the top room and goal is the
middle of the bottom room in Fig. 5. As can be seen, the
robot can reach the goal position without colliding with walls
or any of the obstacles as indicated by the black path in Fig.
5a. The marked position in Fig. 5b is the starting position

in that room. The original map before creating the potential
field can be seen in Fig. 6. Here white lines and rectangles
are walls and obstacles, respectively.

(a) Environment map with calcu-
lated obstacle-free path

-2

160

140

-1.98

120

-1.96

100

80

-1.94

140
60

120

-1.92

100
40

80

60
20

-1.9

40

20
0

0

-1.88

X: 35

Y: 76

Z: -1.949

(b) Potential values within the last
room.

Fig. 5: Second scenario: rooms with obstacles inside.

Fig. 6: Map of environment with two obstacles inside of
rooms.

In the last example, we demonstrate a possible path that
the robot follows to reach its goal in a more complex but
obstacle free environment using the potential values of the
tessellated map in Fig. 7. The calculated path is indicated as
a black line. The path is calculated according to the nodes
that lead to the final node.

We also performed a comparative study using one of
the most popular methods for path planning which is the
A∗-algorithm. The application of the A∗-algorithm with a
maximum step length of one in each direction is shown in
Fig. 8a. As the only thing affecting the choice of path is the
number of steps needed, the path will be optimized in terms
of distance. However, this tends to be dangerous in most

Fig. 7: Example scenario of a more complex environment.

environments and problematic with real time experiments
since the path actually touches the walls of the rooms.

Goal

Start

Path

(a) A∗.

Goal

Start

Path

(b) A∗ using potential field.

Fig. 8: Comparison of performing the A∗-algorithm using
left: a distance based heuristic and right: using the potential
field generated using the proposed method on map in Fig. 4.

In comparison, when applying the A∗-algorithm to the
potential field calculated using the monogenic scale space,
see Fig. 8b. The found path appears much safer, passing
through the middle of the doorways and clearly avoiding
the walls. This clearly illustrates the need for having a
more complex error function to optimize, rather than a
naive, euclidean distance measure. It also shows that the A∗-
algorithm can be implemented as the path selecting step after
generating the potential field, with a good result. Though it
should be noted that since A* searches over all nodes, it will
be slower than directly following the direction of highest
potential.

Table I shows the run-time as well as the number of
steps necessary for the algorithm to get from the starting
position to the goal position in Fig. 8 and Fig, 3a. As can
be seen in the table, the time for running the A∗-algorithm
is highly dependent on the heuristic used when choosing
path to explore. But when run on the map in Fig 4 it can

be seen that all found path are of approximately the same
length, while only using A∗ leads to a path much close to
the obstacles than the other two. One thing to note is that
the monogenic scale space using steepest ascent and using
A∗ to find the path results in similar paths, even though the
A∗-algorithm is a bit slower.

TABLE I: Comparison in run-time and length of found path.

Number of steps Typical time
A∗-algorithm 306 0.36s
Monogenic scale space 307 0.12s
Monogenic scale space + A∗ 305 0.12s + 0.04s

V. CONCLUSION

In this paper we propose a method to find a solution to
the problem of planning a collision-free path which requires
solving intermediate steps: tessellation of the environment
map, representing it as a graph to preserve the complete
information about the environment using the adjacency of
the rectangles, and finding the monogenic scale space of each
node to calculate the potential field of the environment.

Tessellation allows a sparse generation of the potential
field limiting the calculations to the nodes that are actually
visited. It can also be done over all nodes in order to
choose an optimal path. The tessellation allows to compute
scale space easily on a rectangular domain. The use of
rectangular domains also allows the monogenic scale space
to avoid including local minima in each region. Even if it
can be performed for the whole map, there is a risk of the
potential field containing local minima. Since the potential
value depends directly on the distance to the source and
sinks, multiple obstacles may block the way.

The monogenic scale space is calculated by use of Fourier
transforms. When the inverse discrete Fourier transform is
applied afterwards the coarseness of the generated potential
field can be controlled depending on required precision in
the path planning. The usage of the monogenic scale space
to create the potential field also allows other approaches for
finding a path, such as fast marching methods. Although,
care needs to be taken of the magnitude of potential sinks
and sources and the scale to avoid creating flat patches in
the potential field.

We also present a comparative study with a popular
approach used in path planning, the A∗-algorithm. Simulation
results reveal that, the proposed method clearly outperforms
the A∗-algorithm in terms of both required simulation steps
and time. Moreover, use of potential field method provides
a safer path than the A∗-algorithm finds on its own.

We are planning to extend our work by applying the
proposed method to an experimental study with one or more
mobile robots in an environment including both static and
dynamic obstacles possibly in a partly unknown environment.
This method can easily be extended to higher dimensional
maps.

REFERENCES

[1] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, pp. 21–71, 1999.

[2] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map building
and localization for an autonomous mobile robot,” in Proc. IEEE IROS
’91.’International Workshop on Intelligence for Mechanical Systems,
Osaka, Japan, Nov. 1991, pp. 1442–1447.

[3] Y. Wang and G. S. Chirikjian, “A new potential field method for robot
path planning,” in Proc. IEEE ICRA ’2000, San Francisco, USA, Apr.
2000, pp. 977–982.

[4] M. G. Park and M. C. Lee, “Artificial potential field based path
planning for mobile robots using a virtual obstacle concept,” in
Proc. IEEE ASME International Conference on Advanced Intelligent
Mechatronics, 2003, pp. 735–740.

[5] Y. K. Hwang and N. Ahuja, “A potential field approach to path
planning,” IEEE Trans. Robot. Automat., vol. 8, pp. 23–32, feb. 1992.

[6] D. Ferguson and A. Stentz, “Field d*: An interpolation-based path
planner and replanner,” Robotics Research, pp. 239–253, 2007.

[7] S. Thrun and A. Bcken, “Integrating grid-based and topological
maps for mobile robot navigation,” in Proc. National Conference on
Artificial Intelligence, Oregon, Aug. 1996.

[8] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and
L. Jurišica, “Path planning with modified a star algorithm for a mobile
robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014.

[9] S. Garrido, L. Moreno, D. Blanco, and P. Jurewicz, “Path planning for
mobile robot navigation using voronoi diagram and fast marching,”
International Journal of Robotics and Automation, vol. 2, pp. 42–64,
2011.

[10] M. Soulignac, “Feasible and optimal path planning in strong current
fields,” IEEE Trans. Robot., vol. 27, pp. 89–98, feb. 2011.

[11] R. Dechter and J. Pearl, “Generalized best-first search strategies and
the optimality of a*,” J. ACM, vol. 32, no. 3, pp. 505–536, July
1985. [Online]. Available: http://doi.acm.org/10.1145/3828.3830

[12] R. Duits, M. Felsberg, L. Florack, and B. Platel, “α scale spaces on a
bounded domain,” in Proc. International Conference on Scale-Space
Theories in Computer Vision, Greece, Sept. 2003, pp. 494–510.

[13] M. Felsberg, “The monogenic scale space on a rectangular domain
and its features,” International Journal of Computer Vision, vol. 64,
pp. 187–201, 2005.

[14] M. Felsberg and G. Sommer, “Scale adaptive filtering derived from
the laplace equation,” in Proc. DAGM Symposium Mustererkennung,
München, 2001, pp. 124–131.

[15] M. Felsberg, “Low-level image processing with the structure
multivector,” Ph.D. dissertation, Christian-Albrechts-University of
Kiel, Germany, 2002. [Online]. Available: http://www.informatik.
unikiel.de/reports/2002/0203.html

[16] M. Felsberg and G. Sommer, “The monogenic signal,” IEEE Trans.
Signal Processing, vol. 49, pp. 3136–3144, Dec. 2001.

Geometric Correspondence Network for Motion Estimation

Jiexiong Tang1, John Folkesson1 and Patric Jensfelt1

Abstract— In this paper, we propose a learning scheme for
generating geometric correspondences to be used for visual
odometry. A recurrent neural network (RNN) on top of a
convolutional neural network (CNN) are jointly optimized to
both detect the location of keypoints and generate a descriptor
in one unified structure. The network is trained by warping
points in one frame to the next with a rigid body transform.
Essentially, learning from warping. The overall training is
focused on movements of the camera rather then movements
within the image, which leads to better consistency in the
matching and ultimately better the motion estimation which we
demonstrate in the experiments. Experimental results show that
the proposed method give significantly less absolute tracking
error (ATE) than using hand crafted keypoint detectors and
descriptors. Furthermore, as a demonstration of the promise
of our method we use a naive SLAM implementation based on
these keypoints and get a performance on par with ORBSLAM.

I. INTRODUCTION
Motion estimation is a fundamental part of mobile robotic

systems. The advantages of being able to estimate motion
solely using an RGB-D sensor are significant. The sensors
are relatively low weight, low power and low cost compared
to lidar for example. At the same time they can give accurate
estimates under the right conditions. Estimates based on a
single sensor are easier to integrated into a system than ones
based on specific suites of sensors as testing and validation
can be done with the sensor detached from the system.

In this paper we focus on visual odometry (VO), i.e.
frame to frame motion estimation using information from a
vision sensor. In particular, we investigate the use of a deep
neural network to learn how to both detect keypoints and
how to match them in an end-to-end fashion using an RGB-
D sensor. We only optimize for geometric correspondence
rather than semantic correspondence. A convolutional neural
network (CNN) is used together with a recurrent neural
network (RNN) and these are jointly optimized to perform
both keypoint detection and feature descriptor generation in
one unified structure which we call the Geometric Corre-
spondence Network (GCN). To train the network we extract
high gradient points in one image and warp these using the
camera motion to the next image. It is important to note
that we do not try to learn to reproduce these high gradient
points or any standard descriptor based on them, but rather
the network learns to find features and descriptors that can

1 The authors are all with the Centre for Autonomous Systems
at KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
jiexiong@kth.se

*This work was partially supported by the Wallenberg Autonomous
Systems and Software Program (WASP). This project has received funding
from the European Unions Horizon 2020 research and innovation program
under grant agreement No. 644839 (CENTAURO).

Fig. 1: RGB-D frames accumulated using frame to frame
camera motion estimation (i.e., using no keyframes and loop
closures) with our proposed method, GCN, for keypoint gen-
eration. Data is collected by RGB-D sensor on a hexacopter
flying around the room.

be matched well. In fact, the points in the warped image
may not even be as detectable based on the gradient as they
were in the unwarped image. We make use of a benchmark
dataset for SLAM [1] for which ground truth positions are
available to perform the warping to generate the training
data. We compare GCN against a number of other visual
features for visual odometry using the same pipeline1. To
further evaluate the method we implement a simple SLAM
backend2 to allow for loop closure and compare our results
to other SLAM methods.

Decades of work has gone into engineering features for
recognition and classification of object, place recognition,
loop closure detection, stereo image matching, etc. Recently,
deep neural networks have been shown to outperform hand
crafted features for all these tasks. The problem of finding
correspondences for frame to frame keypoint matching for a
visual odometry is a little investigated area in comparison.
With consideration to that, achieving results that match
popular methods is encouraging.

In summary, the main contribution of our work is a
framework (GCN) for simultaneously learning both feature
locations (for motion estimating) and descriptors (for match-
ing) optimized for the task of camera motion estimation.

1OpenCV’s PnP with RANSAC
2Pose graph plus optimization

II. RELATED WORK

This paper is related to many different well researched do-
mains. We will focus on the relation to existing VO / SLAM
solutions and deep learning used in related applications.

Existing methods to VO and SLAM can be divided into
sparse, or feature based, methods and dense, or direct, meth-
ods. In the sparse methods, keypoints are first extracted and
then they are matched based on geometric constraints and
local descriptors. The motion is estimated based on the cor-
respondences between points in two frames. ORBSLAM [2],
[3] represents the state-of-the-art for SLAM today in this
category. ORB [4] feature are extracted in new frames and
are then matched to recent frames to perform camera motion
estimation and to distant frames using a binary bag of words
representation [5] to detect loop closures. ORBSLAM is
available in implementations for monocular, stereo and RGB-
D sensor setups. In dense methods, information from all the
pixels in the image are used, thus eliminating the need for
feature detection. Optimizing is instead done directly using
the intensities in the images. In [6], Comport et. al. present
a visual odometry system able to estimate the motion of the
sensor with a vertical error of only 20cm over a distance of
200m in a urban driving scenario. Kerl et. al. present the
Direct Visual Odometry (DVO) method in [7]. They build
a pose graph and use g2o [8] for optimization to reduce
the error. As an alternative to matching frame to frame,
KinectFusion [9], Kintinous [10] and ElasticFusion [11]
build a volumetric representation to which new frames are
matched. The methods SVO [12] and LSD-SLAM [13] fall
somewhere in between dense and sparse, combining the best
traits from the feature based methods with those from the
dense methods and having. The work in our paper is most
closely related to feature based methods such as ORBSLAM.
However, whereas in ORBSLAM they use an off-the-shelf
feature (ORB) and design a complete pipeline around it, we
focus on the design of the feature itself and thus complement
rather then compete.

Deep learning based methods are already defining the
state-of-the-art in many applications in computer vision. As a
key component for 3D scene reconstruction, stereo matching
using CNNs have been shown to perform very well [14],
[15], [16]. In recent work, [17], the efficiency of deep stereo
matching is improved by exploiting an inner product layer
between two feature representations. Deep learning has also
been applied to predict optical flow. DeepFlow [18] used
DeepMatch [19] to compute optical flow using multi-layer
architectures that match sub-patches on different scales. To
reduce the computational cost, a faster and edge preserving
method have been proposed in [20]. Combing DeepMatch
with contour detection, EpicFlow[21] interpolates matches
and obtain a dense estimation. In FlowNet [22], [23], a CNN
is trained by a large synthetic dataset[24] to directly predict
per-pixel flow. This line of work is closely related to our
work as optical flow can be used to estimate the camera
motion. However, we differ in that we focus on detection
and match of the points that are most suited to estimate the

motion of the camera.
In another stream of work, a network is trained to estimate

the depth from monocular images [25], [26], in essence creat-
ing a virtual RGB-D sensor for a standard monocular camera.
In CNN-SLAM [27] this approach is used in a mapping
framework, allowing them to recover the scale using only
monocular information. Place recognition is another area for
which deep nets have been applied with great success [28],
[29], [30]. Similar to us [29] makes use of siamese networks.
They are fine-tuned to match aerial and ground-level images.
Addressing the same problem of matching aerial and ground
level images is [31]. Like in our work, the aim is to learn
to both detect and describe keypoints. A fully-convolutional
recursive network outputs keypoint responses at different
scales. Patches are extracted around these keypoints and
descriptors are generated.

In [32], the camera motion is estimated using features
from a siamese network from color images in a classification
manner. The translations and rotations are discretized within
pre-defined ranges to a small number of bins (10 bins in the
default setting). The network is trained to classify the ego
motion with classes defined as these bins. The discretization
limits the accuracy of the motion estimation and the pre-
defined range limits allowed motion of the camera.

In [33], the Universal Correspondence Network (UCN) is
presented as a way to extract dense features for applications
where one needs geometric and semantic correspondences.
In contrast to patch similarity based methods, UCN directly
optimizes features for visual correspondence. This is the
work that is closest to our work. But the aim is a universal
approach rather than an approach targeting a specific applica-
tion like ours. In an evaluation of camera motion estimation
they show that UCN performs better than [32] despite being
more general. However, it is only on par with sparse features
that have been designed for the task of motion estimation.
Though general as an visual correspondence framework and
outperforming patch similarity based methods in several
settings, it does not beat traditional methods in the context
of camera motion estimation. In contrast to UCN, we focus
specifically on camera motion estimation and show that this
allows us to significantly outperform hand crafted features,
and by more than UCN for this task.

In summary, our work is closely related to VO and SLAM
work but in contrast to most of this wortk we do not focus on
the estimation problem but rather the learning of a keypoints
to support the camera motion estimation. We use a deep
learning approach but unlike related work in this area we
train our network for the task of camera motion estimation
rather than addressing the general problem of generating
correspondences such as UCN [33].

III. MOTION ESTIMATION

In this section, we briefly review the feature based Bundle
Adjustment (BA) algorithm. Let the points in the reference
image be denoted as xi = [ui, vi]T , i ∈ [1,N] and their
correspondences in current image yi = [u′i, v′i]T , i ∈ [1,N] .
To align these two images and estimate the relative transform

between them, we first project yi to 3D coordinates with the
warping function π(.):

π(xi, di) = [di(ui − cx)
fx

,
di(vi − cy)

fy
, di]T (1)

where di is the depth measurement of the corresponding
point and cx, cy, fx, fy are the camera intrinsics. After the
projection, we warp the 3D points with a rigid body trans-
formation and project them back to image plane. Geometrical
errors caused by mis-alignment can be calculated as follows:

Egeo(ξ) =∑
i

ri(ξ) =∑
i

(xi − π−1(R⋅π(yi) + t))2 (2)

where R ∈ R3×3 is rotation matrix and t ∈ R3 is the trans-
lation vector. They together compose a rigid body transform
exp(ξ̂) ∈ SE(3), which is defined by ξ = [ωT , tT]T ∈ se(3).
ξ is a member of the Lie algebra and it is mapped to the Lie
group SE(3) through the matrix exponential exp(.):

exp(ξ̂) = [R t
0 1

]

ξ̂ = [[ω]× t
0 1

]
(3)

where [ω]× is the skew-symmetric matrix of ω.
The estimated relative pose can be obtained by optimiz-

ing the residual error in Eq.2. The Gaussian-Newton (GN)
method is used to solve this non-linear least squares problem.
GN calculates ξ iteratively as follows:

ξ(n+1) = ξ(n) − (Jr
TJr)

−1
Jr

Tr(ξ(n)) (4)

where Jr is the Jacobian matrix with respect to the residual
measurements.

IV. PROPOSED METHOD
The overall network structure of GCN can be seen in Fig.2.

It is a deep CNN with a shallow recurrent network on top to
perform both dense feature extraction and keypoint detection.
It is well known that good points to use for estimating the
rigid body transformations are those with high gradient in
both horizontal or vertical directions in the image. In contrast
to [33], we therefore train with input from keypoint detectors
rather than random points. However, it is not guaranteed
that the same keypoints will appear in two images, despite
being consecutive. To tackle this problem during training,
keypoints in first image are extracted and warped to the next
frame, using the known frame to frame transformation. These
then serve as the ground truth correspondences. By doing so,
we optimize the network for the case where correspondences
of points can be found by warping them with a rigid body
transform not by their appearance in the second frame. This
method will not match points that have similar appearances
in the two images but are not actually geometric points such
as lines formed by crossing edges at different depths. That
does not mean such poor features will not be found by the
trained net but at least we are not using them for training.

In the remainder of this section, we first introduce deep
metric learning for training dense feature descriptors. Then,

Fig. 2: The overall learning scheme and data flow of GCN is
shown with colors represent different blocks. The upper part
is the CNN that extracts features in a dense way. It consists
of a fully convolutional part for multi-scale feature repre-
sentation and a deconvolutional part for detail refinement.
The lower part is a shallow recurrent structure to predict the
location of keypoints in both images. Note that the actual
networks have more hidden layers than drawn.

we present the method for jointly training a detector using
temporal information of resultant deep features. Finally, we
summarize the overall multi-task learning scheme.

A. Dense Feature Extraction

Pyramid Network Backbone. As shown in Fig. 2, the
proposed network structure for extracting dense feature can
be divided into two parts: omne convolutional and one
deconvolutional part. For the convolutional part we used
ResNet50 [34], which is a 50 layer CNN with a bottleneck
structure and batch normalization. Its weights are pre-trained
with the ImageNet [35] object classification dataset with
1.2 million labeled images. When the image is fed into
ResNet50, its size is gradually reduced by pooling operation
and convolution with stride larger than one. To recover the
features to its original size, the deconvolutional part is used
for upsampling the features. Inspired by the structure in
[36], multiple shortcut paths are made between intermediate

Fig. 3: An example of keypoint prediction using GCN for the TUM datasets [1]. The two color images are the input for the
GCN. In each row, the three columns are raw RGB image, ground truth and prediction, respectively. For the ground truth,
points with no depth or warped points that are outside of image boundary are discarded. We notice that the regions with no
texture are not generating keypoints and that some regions where the keypoint detector used to generate the ground truth
has generated keypoints, do not generate any keypoints either.

layers of the convolutional and the deconvolutional parts
to obtain more fine-grained feature. A shortcut is a direct
concatenation of feature maps by summing over channels.

Deep Metric Learning. Deep metric learning (DML) is
applied to fine-tune the CNN to a dense feature extractor.
DML maps the input samples to a feature space where
similar samples are closer and dissimilar samples are farther
with the l2 distance as metric. Training with DML allows
the features to be optimized for nearest neighbour matching.

We use triplet loss [37] to perform the DML. It has an
objective function that penalizes three samples at a time:
one anchor point and its paired positive/negative samples. In
our proposed method, we calculate triplet loss on every point
candidates as follows:

Lmetric =∑
i

max(0, s2xi,y
∗

i
− s2xi,z

∗

i
+m)

sx,y = ∣∣f1(x) − f2(y)∣∣2
(5)

where sx,y is the `2 distance between two feature vectors
at location x and y from output feature f1 and feature
f2 (shown in Fig.2). m is a margin determining how far
dissimilar points should be pushed away in feature space. xi

is called the anchor point which is the keypoint in feature
#1. Points y∗i and z∗i are its positive and negative matched
points in feature #2. The location of positive matched point
y∗i is obtained by warping xi with ground truth R∗, t∗:

y∗i = π−1(R∗ ⋅ π(yi) + t∗) (6)

The location of the negative sample z∗i is found by hardest

negative sample mining:

z∗i = argmin
zi∣zi≠y

∗

i

sxi,zi
(7)

That is, pick the closest point in feature space that is not
a positive sample. Any point other than the true matched
can be used as the negative pair for the anchor, but the hard
negative sample will contribute the most to the loss function,
and thus the gradient, and thereby accelerates the DML.

B. RECURRENT MASK PREDICTION

Recurrent Structure. We treat the keypoint detection as a
binary classification problem which uses the dense features
as input. To predict the keypoint locations simultaneously
for the two input images, we want the network to exploit
temporal information as well as spatial information. We use a
shallow recurrent convolutional network (RCNN) to achieve
this goal. The proposed RCNN can be formulated as follows:

h1 = ReLU(Wi2h ○ [f1,h0]),h2 = ReLU(Wi2h ○ [f2,h1])
v1 = ReLU(Wi2h ○ [f1,v0]),v2 = ReLU(Wi2h ○ [f2,v1])
o1 = softmax(Wh2o ○ h1 +Wh2o ○ v2),
o2 = softmax(Wh2o ○ h2 +Wh2o ○ v1),

(8)

where ○ is convolution operation, h and v are two hidden
states used to store informations and o is the 2 channels
output at given location where a softmax function will be
applied to calculate the probability of being a keypoint.
Wi2h and Wh2o are hidden weights to be learned and

represent weights of input-to-hiddden path and hidden-to-
output path, respectively.

Equation (8) above shows the data flow of the proposed
recurrent structure. By designing the data flow, we can
directly control how the detection is performed. Firstly, two
dense features are input with their original order. Then, the
two features are switched and fed into the RCNN again.
Finally, the output of the previous two are concatenated as
the final output of the RCNN. This is inspired by [3] where
alignment of images is performed twice to utilize as much
information as possible from them.

Mask Classification The training data for the keypoint
classification is a mask with label 0 or 1 to indicate whether
a pixel is classified as a keypoint or not (middle column in
Fig. 3). The masks are generated by giving keypoints in first
images a value 1 and warping them to the next image. Then,
a weighted cross entropy is calculated over every pixel as
follows:

Lmask = Lce(o1,x) +Lce(o2,y
∗)

Lce(o,x) = −∑
i

(α1cxi
log(softmax(o(xi)))+

α2(1 − cxi
)log(1 − softmax(o(xi)))

(9)

where c is the label of a given 2D point and o is the predicted
possible keypoint. As in the previous subsection, xi and
yi∗ are keypoints and their correspondences obtained by
warping, respectively. α is a parameter to balance between
different classes. This weighting is crucial for the training
convergence as there is an obvious imbalance among these
two classes: the number of keypoints (thousands) versus the
total number of pixel (hundreds of thousands).

C. MULTI-TASK TRAINING

Algorithm 1: Multi-task Training
Input : Training set X = {(I,D,ξ)}, Weights of CNN

W, learning rate r, iteration number Ni, batch
size Nt.

Output: Weights of CNN W.
1 Initialization: Initialize W with pre-trained network.
2 for n = 1;n <= Ni;n + + do
3 Random query a pair of images in dataset and

calculate their relative pose with their poses ξ;
4 Extract keypoint in first image and warped them to

the second image with relative pose, generate two
binary masks indicate the keypoint location;

5 Applying following loss with Eq.5 and 9:
6 Lmul = Lmetric +Lmask

7 for k = 1;k <= Nl;k + + do
8 Backward propagate loss for each layer
9 end

10 Update W with learning rate r
11 end
12 return W

The final loss for the multi-task training is a combination
of triplet loss in Eq. 5 and cross entropy in Eq. 9. These

are weighted equally. The adaptive gradient decent method,
ADAM [38], is used for optimizing this combined loss. The
weights are randomly initialized except for Resnet50. As
commonly done in fine tuning, the learning rate for Resnet50
is set smaller than the random initialized weights (10−4 and
10−3 in our case). The margin for the triplet loss is set to 1,
and weights for [α1, α2] handling imbalanced classes in the
weighted cross entropy is set as [0.1,1.0].

V. EXPERIMENTS
In this section, we evaluate the effectiveness of our frame-

work with the TUM RGB-D benchmark [1]. This benchmark
provides synchronized ground truth trajectory for an RGB-
D camera in various scenes. The Absolute Trajectory Error
(ATE) is used as the metric for the tests. We first compared
GCN with ORB, SIFT and SURF as keypoints for frame
to frame motion estimation. The latter ones are commonly
used features in visual tracking. Then, we incorporate GCN
in a SLAM system, to evaluate against two state-of-the-art
SLAM systems: ORB-SLAM2 and Elastic Fusion. The first
experiment will demonstrate the quality of the feature for
motion estimation compared to other features using the same
frame to frame motion estimation pipeline. The second test
will provide a comparison against existing, and end-to-end
solutions for RGB-D based motion estimation to allow for a
quantitative assessment of the performance on this task.

A. Implementation
Training and Testing Settings To properly validate the

generalization ability, we used sequences from different
categories in the TUM benchmark for training, fr2, and
testing, fr1/3. This ensures that there is no overlap between
the training and testing sequences. The list of the selected
datasets are shown in Tab.I. They cover typical indoor scenes
with semantic objects, e.g., desk, computer and chairs, etc.
We subsample the sequences to use only every fourth image,
to provide harder samples (images further apart) for training.

TABLE I: TUM DATASETS USED FOR TRAINING

Dataset # Frame Pairs
fr2 xyz 3611
fr2 rpy 3217
fr2 desk 2219
fr2 360 hemisphere 2643
fr2 360 kidnap 1409
fr2 large with loop 1223
fr2 pioneer 360 826
fr2 pioneer slam 2168
Total 17316

To generate the training data, we use high gradient points
ranked by the Harris algorithm. To ensure a distribution of
keypoints over the entire image and to allow highly textured
regions to generate many keypoints we run the algorithm
twice. First on the whole image and then on each sub-image
when dividing the images into a 4× 4 grid. Due to naturally
occurring noise3, misalignments exist in the image planes

3e.g. noise in depth measurements, errors in the ground truth and
imperfect camera calibration

Fig. 4: Raw pointcloud reconstruction using fr1-floor and fr3-long. More can be found at: www.cas.kth.se/gcn.

TABLE II: ATE USING FRAME TO FRAME TRACKING

Dataset GCN ORB SIFT SURF
fr1 floor 0.015m 0.080m 0.073m 0.074m
fr1 desk 0.037m 0.151m 0.144m 0.148m
fr1 360 0.059m 0.278m 0.305m 0.279m
fr3 long office 0.061m 0.090m 0.076m 0.070m
fr3 large cabinet 0.073m 0.097m 0.091m 0.143m
fr3 nst 0.020m 0.061m 0.036m 0.030m
fr3 nnf 0.221m - - -

after warping keypoints using the ground truth trajectory. To
compensate for this, the KNN matching criteria is relaxed
to prevent divergence in the training. For negative sample
mining, only hardest samples with coordinate distances to
target correspondence more than 5 pixels are used.

SLAM system After finding geometric correspondences
with GCN, a lightweight keyframe based mapping system
is used to compare with state-of-the-art SLAM systems.
This pre-integrated system includes basic BA, pose graph
optimization and vocabulary based loop closure detection.
The poses of keyframes are continuously optimized during
tracking as follows:

Egraph = ∑
<i,j>∈C

(ξi,j ⊞ ξ−1j ⊞ ξi)TΩi,j(ξi,j ⊞ ξ−1j ⊞ ξi)

(10)

where C is the edge set of relative poses collected in
the map. ⊞ is the generalized sum operation on the Lie
group manifold. Ω is information matrix proportional to
the uncertainty of parameters. The loop closure detection is
performed by the bag-of-word (BoW) library [5] for querying
image with similarity. It is an appearance based retrieval
method that converts features to a BoW vector and match
using a hierarchical tree structure.

Development Environment The test platform is equipped
with a GTX 1080 graphic card and i7-4790 CPU. The overall
training is implemented with deep learning framework Py-
torch. The BA and pose graph optimization is implemented
with g2o [8] and the OpenCV libraries, where a GPU version
of KNN is used for feature matching.

TABLE III: ATE USING CLOSE LOOP SYSTEM

Dataset Frames# Ours ORB-SLAM2 Elastic
Fusion

fr1 floor 1227 0.038m 0.036m -
fr1 desk 573 0.029m 0.016m 0.020m
fr1 360 744 0.069m 0.213m 0.108m
fr3 long office 2488 0.040m 0.010 0.017m
fr3 large cabinet 984 0.097m - 0.099m
fr3 nst 1639 0.020m 0.019m 0.017m
fr3 nnf 455 0.064m - -

B. Evaluation of Motion Estimation without Loop Closing

We compare performance of GCN, ORB[4], SIFT[39]
and SURF[40] on frame-by-frame tracking. During the test,
features of different methods are extracted separately and
fed into the same BA frontend for motion estimation. This
frontend performs KNN matching for the resultant features
and PnP with RANSAC to estimate camera motion. Recipro-
cal verification is performed during KNN matching. Feature
number and parameters used in PnP with RANSAC are set
the same for fair comparison. Thus, the only variable in this
sequential motion estimate setting is the feature used.

Tab. II shows the ATE for frame-to-frame tracking us-
ing the first 200 frames from each sequence. For all four
methods, the number of keypoints to extract are set to
2000. We use 200 frames from each sequence to show
how ATE accumulated in different scenes. Compared with
other methods, GCN achieves the best performance on all
sequences. Especially in scene fr3 nnf, a wall with weak
texture, GCN is still able to produce trackable features while
others lose track. Fig. 5 shows how ATE is changing over
time for the different methods. The results show how drift is
accumulated and gradually effecting the overall trajectory. It
can be seen that our method rises to a stable low error while
the other methods often start out similar but then it rises for
a longer time before reaching a stable error.

C. Evaluation of Closed Loop System

We compare our lightweight SLAM system that uses GCN
with open source SLAM frameworks: ORB-SLAM2 and

0 25 50 75 100 125 150 175 200
Frame Number (#)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ab
so

lu
te

 T
ra

je
ct

or
y

Er
ro

r (
m

)

GCN
ORB
SIFT
SURF

(a) fr1-360

0 25 50 75 100 125 150 175 200
Frame Number (#)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ab
so

lu
te

 T
ra

je
ct

or
y

Er
ro

r (
m

)

GCN
ORB
SIFT
SURF

(b) fr1-desk

0 25 50 75 100 125 150 175 200
Frame Number (#)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ab
so

lu
te

 T
ra

je
ct

or
y

Er
ro

r (
m

)

GCN
ORB
SIFT
SURF

(c) fr3-nst

0 25 50 75 100 125 150 175 200
Frame Number (#)

0.0

0.2

0.4

0.6

0.8

1.0
Ab

so
lu

te
 T

ra
je

ct
or

y
Er

ro
r (

m
)

GCN
ORB
SIFT
SURF

(d) fr3-nnf

Fig. 5: Figure show the changing of ATE using different scenes during same amount of time.

Elastic Fusion, two representatives state-of-the-art methods
in sparse and dense geometric reconstruction, respectively.
Note that these SLAM systems have been developed more
comprehensively than our naive SLAM system.

ATE using all frames from the datasets are shown in
Tab.III. Our method achieves competitive results compared
with the other two methods. We see that even with the
longer sequences our method does not lose track. In sequence
fr1 floor, Elastic Fusion lost track at places where there are
missing frames, causing large displacements. Also, this scene
is challenging for a fusion based method as most of existing
structures are flat. Since there are rich textures on the floor,
both our method and ORB-SLAM2 works well and obtained
similar results. Then, in fr1 360, the ORB feature didn’t work
as well as GCN, it results in an observable deterioration
in the ATE of ORB-SLAM2. Similarly, in fr3 large cabinet,
ORB-SLAM2 lost track when the camera comes to the back
of the cabinet with a rotation. The number of keypoints
dropped sharply when camera looked at the white back of
the cabinet. In fr3 nnf, as shown in Section V-B, the classical

features cannot cope with this weak textured wall. Thus, both
ORB-SLAM2 and Elastic Fusion failed to start the tracking
at beginning.

VI. SUMMARY AND CONCLUSIONS

In this paper, we presented a unified framework for learn-
ing both detection of keypoints and descriptors for these.
The framework is optimized for the task of camera motion
estimation. We showed how we can generate training data
by using data from SLAM benchmark datasets for which
the ground truth of the camera is provided. We demonstrated
how the resulting features outperform currently used features
for motion estimation without loop closure and that we,
even with a minimalistic implementation of loop closure
optimization, achieve results that are on par with state-of-
the-art methods such as ORB-SLAM2.

Our target application is a fully autonomous flying robot.
In the future, we plan to improve the efficiency of GCN in
terms of inference and matching. For the inference, network
depth and storage consumption can be greatly reduced as

shown in Deep Compression[41] and SqueezeNet[42]. Al-
ternative a shallower backbone network can be used at the
cost of a minor loss in accuracy. For matching, feature like
ORB can be matched very efficiently since the descriptor is
binarized. Work in DeepBit [43] shows that a CNN is also
capable of producing representative binary features. With
these possible improvements, GCN has potential to be well
exploited in our future real-time application.

REFERENCES

[1] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of rgb-d slam systems,” in 2012
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2012.

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “Orb-slam: A
versatile and accurate monocular slam system,” IEEE Trans. on
Robotics, vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[3] R. Mur-Artal and J. D. Tardos, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Trans. on
Robotics, vol. PP, no. 99, pp. 1–8, 2017.

[4] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in Intl. Conf. on Computer Vision, 2011.

[5] D. Galvez-Lpez and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Trans. on Robotics, vol. 28,
no. 5, pp. 1188–1197, 2012.

[6] A. I. Comport, E. Malis, and P. Rives, “Accurate quadrifocal tracking
for robust 3d visual odometry,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2007.

[7] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d
cameras,” in 2013 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, 2013.

[8] R. Kmmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2011.

[9] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
2011 10th IEEE Intl. Symposium on Mixed and Augmented Reality,
2011.

[10] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and
J. McDonald, “Real-time large-scale dense rgb-d slam with volumetric
fusion,” Intl. Journal of Robotics Research, vol. 34, no. 4-5, pp. 598–
626, 2015.

[11] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” Intl. Journal of Robotics Research, vol. 35, no. 14, pp.
1697–1716, 2016.

[12] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“Svo: Semidirect visual odometry for monocular and multicamera
systems,” IEEE Trans. on Robotics, vol. 33, no. 2, pp. 249–265, 2017.

[13] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” in European Conf. on Computer Vision (ECCV),
2014.

[14] S. Zagoruyko and N. Komodakis, “Learning to compare image patches
via convolutional neural networks,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2015.

[15] J. Žbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 2287–2318, 2016.

[16] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with
a convolutional neural network,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2015.

[17] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning
for stereo matching,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[18] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “Deepflow:
Large displacement optical flow with deep matching,” in IEEE Intl.
Conf. on Computer Vision (ICCV), 2013.

[19] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “Deep-
matching: Hierarchical deformable dense matching,” Intl. Journal of
Computer Vision, 2016.

[20] L. Bao, Q. Yang, and H. Jin, “Fast edge-preserving patchmatch for
large displacement optical flow,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2014.

[21] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “Epicflow:
Edge-preserving interpolation of correspondences for optical flow,” in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2015.

[22] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in IEEE Intl. Conf. on Computer
Vision (ICCV), 2015.

[23] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep net-
works,” CoRR, 2016.

[24] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016.

[25] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in Intl. Conf. on 3D Vision (3DV), 2016.

[26] D. Eigen and R. Fergus, “Predicting depth, surface normals and se-
mantic labels with a common multi-scale convolutional architecture,”
in IEEE Intl. Conf. on Computer Vision (ICCV), 2015.

[27] K. Tateno, F. Tombari, and I. L. andNassir Navab, “Real-time dense
monocular slam with learned depth prediction,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[28] N. Sünderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell,
B. Upcroft, and M. Milford, “Place recognition with convnet land-
marks: Viewpoint-robust, condition-robust, training-free,” in Robotics:
Science and Systems, July 2015.

[29] T.-Y. Lin, Y. Cui, S. Belongie, and J. Hays, “Learning deep representa-
tions for ground-to-aerial geolocalization,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2015.

[30] D.-K. Kim and M. R. Walter, “Satellite image-based localization via
learned embeddings,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), Singapore, 2017.

[31] H. Altwaijry, A. Veit, and S. Belongie, “Learning to detect and match
keypoints with deep architectures,” in British Machine Vision (BMVC),
2016.

[32] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,”
in IEEE Intl. Conf. on Computer Vision (ICCV), 2015.

[33] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker, “Universal cor-
respondence network,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Intl.
Journal of Computer Vision, 2015.

[36] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in IEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2015.

[37] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[39] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Intl. Journal of Computer Vision, 2004.

[40] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-
tures,” in European Conf. on Computer Vision (ECCV), A. Leonardis,
H. Bischof, and A. Pinz, Eds., 2006.

[41] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, 2015.

[42] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, 2016.

[43] K. Lin, J. Lu, C.-S. Chen, and J. Zhou, “Learning compact binary
descriptors with unsupervised deep neural networks,” in IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2016.

Deep Projective 3D Semantic Segmentation

Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,
Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg

Computer Vision Lab, Dept. of Electrical Engineering, Linköping University

Abstract. Semantic segmentation of 3D point clouds is a challenging problem
with numerous real-world applications. While deep learning has revolutionized
the field of image semantic segmentation, its impact on point cloud data has
been limited so far. Recent attempts, based on 3D deep learning approaches (3D-
CNNs), have achieved below-expected results. Such methods require voxeliza-
tions of the underlying point cloud data, leading to decreased spatial resolution
and increased memory consumption. Additionally, 3D-CNNs greatly suffer from
the limited availability of annotated datasets.
In this paper, we propose an alternative framework that avoids the limitations
of 3D-CNNs. Instead of directly solving the problem in 3D, we first project the
point cloud onto a set of synthetic 2D-images. These images are then used as
input to a 2D-CNN, designed for semantic segmentation. Finally, the obtained
prediction scores are re-projected to the point cloud to obtain the segmentation
results. We further investigate the impact of multiple modalities, such as color,
depth and surface normals, in a multi-stream network architecture. Experiments
are performed on the recent Semantic3D dataset. Our approach sets a new state-
of-the-art by achieving a relative gain of 7.9%, compared to the previous best
approach.

Keywords: Point clouds, semantic segmentation, deep learning, scanning arti-
facts, hard scape

1 Introduction

The rapid development of 3D acquisition sensors, such as LIDARs and RGB-D cam-
eras, has lead to an increased demand for automatic analysis of 3D point clouds. In par-
ticular, the ability to automatically categorize each point into a set of semantic labels,
known as semantic point cloud segmentation, has numerous applications such as scene
understanding and robotics. While the problem of semantic segmentation of 2D-images
has gained a considerable amount of attention in recent years, semantic segmentation of
point clouds has received little interest despite its significance. In this paper, we propose
a framework for semantic segmentation of point clouds that greatly benefits from the
recent developments in semantic image segmentation.

With the advent of deep learning, many tasks within computer vision have seen a
rapid progress, including semantic segmentation of images. The key factors for this de-
velopment are the introductions of large labeled datasets [2] and GPU implementations
of Convolutional Neural Networks (CNNs). However, CNNs have not yet been success-
fully applied for semantic segmentation of 3D point clouds due to several challenges.

ar
X

iv
:1

70
5.

03
42

8v
1

 [
cs

.C
V

]
 9

 M
ay

 2
01

7

2 Felix Järemo Lawin et al.

In contrast to the regular grid-structure of image data, point clouds are in general sparse
and unstructured. A common strategy is to resort to voxelization in order to directly ap-
ply CNNs in 3D. This introduces a radical increase in memory consumption and leads
to a decrease in resolution. Additionally, labeled 3D data, which is crucial for training
CNNs, is scarce due to difficulties in data annotation.

In this work, we investigate an alternative approach that avoids the aforementioned
difficulties induced by 3D CNNs. As our first contribution, we propose a framework
for 3D semantic segmentation that exploits the advantages of deep image segmentation
approaches. The point cloud is first projected onto a set of synthetic images, which are
then used as input to the deep network. The resulting pixel-wise segmentation scores
are re-projected into the point cloud. The semantic label for each point is then obtained
by fusing scores over the different views. As our second contribution, we investigate the
impact of different input modalities, such as color, depth and surface normals, extracted
from the point cloud. These modalities are fused in a multi-stream network architecture
to obtain the final prediction scores.

Compared to semantic segmentation methods based on 3D CNNs [17], our approach
has two major advantages. Firstly, our method benefits from the abundance of the al-
ready existing data sets for image segmentation and classification, such as ImageNet [2]
and ADE20K [28]. This significantly reduces, or even eliminates the need of 3D data
for training purposes. Secondly, by avoiding the large memory complexity induced by
voxelization, our method achieves a higher spatial resolution which enables better seg-
mentation quality.

We perform qualitative and quantitative experiments on the recently introduced Se-
mantic3D dataset [6]. We show that different modalities contain complementary infor-
mation and their fusion significantly improves the final segmentation performance. Fur-
ther, our approach sets a new state-of-the-art performance on the Semantic3D dataset,
outperforming both classical machine learning methods and 3D-CNN based approaches.
Figure 4 shows an example segmentation result using our method.

2 Related Work

The task of semantic point cloud segmentation has received an increasing amount of
attention due to the rapid development of sensors capable of capturing high-quality 3D
data. RGB-D cameras, such as the Microsoft Kinect, have become popular for robotics
and computer vision tasks. While RGB-D cameras are more suitable for indoors envi-
ronments, terrestrial laser scanners capture large-scale point clouds for both indoors and
outdoors applications. Both RGB-D cameras and modern laser scanners are capable of
capturing color in association with the 3D information using calibrated RGB cameras.
Besides visualization, this additional information is highly useful for automated anal-
ysis and processing of point clouds. While color is not a necessity for our approach, it
alleviates the task of semantic segmentation and enables the use of large-scale image
datasets.

Most previous works [1,7,11,16,13] in 3D semantic segmentation apply a combina-
tion of (i) hand-crafted features, (ii) discriminative classifiers and (iii) spatial smooth-
ness models. In this setting, the construction of discriminative 3D-features (i) is ar-

Deep Projective 3D Semantic Segmentation 3

guably the most important task. Popular alternatives include features based on the 3D
structure tensor [7,26,11,1], histogram-based descriptors [7,16,11] such as Spin Images
[10] and SHOT [21], and simple color features [26,16,11]. The classifiers (ii) are of-
ten based on maximum margin methods [13,1] or employ random forests [7,11,16]. To
utilize spatial correlation between semantic labels (iii), many methods apply graphical
models, such as the Conditional Random Field (CRF) [26,1,13].

Recently, deep convolutional neural networks (CNNs) have been successfully ap-
plied for semantic segmentation of 2D images [15]. Their main strength is the ability
to learn high-level discriminative features, which eliminates the need of hand-designed
representations. The rapid progress of deep CNNs for a variety of computer vision prob-
lems is generally attributed to the introduction of large-scale datasets, such as ImageNet
[2], and improved performance for GPU computing.

Despite its success for image data, the application of CNNs to 3D point cloud data
[9,20,27] have been severely hindered due to several important factors. Firstly, a point
cloud does not have the neighborhood structure of an image. The data is instead sparse
and scattered. As a consequence, CNN-based methods resort to voxelization strategies
of the underlying point cloud data to enable 3D-convolutions to be performed (3D-
CNNs). Secondly, voxelization have several disadvantages, including loss of spatial
resolution and large memory requirements. 3D-CNNs are therefore restricted to small
volumetric models or processing data in many smaller chunks, which limits the use of
context. Thirdly, annotated 3D data is extremely limited, especially for the 3D semantic
segmentation task. This greatly limits the power of CNNs for semantic segmentation of
generic 3D point clouds.

In contrast, our approach avoids these short comings by projecting the point cloud
into dense 2D image representations, thus removing the need for voxelizations. The
2D images can then be efficiently processed using 2D convolutions. Also, performing
segmentation in image space allows us to leverage well developed 2D segmentation
techniques as well as large amount of annotated data.

3 Method

In this section we present our method for point cloud segmentation. The input is an
unstructured point cloud and the objective is to assign a semantic label to each point. In
our method we render the point cloud from different views by projecting the points into
synthetic images. We render color, depth and other attributes extracted from the point
cloud. The images are then processed by a CNN for image-based semantic segmenta-
tion, providing a prediction scores for the predefined classes in every pixel. We make
the final class selection from the aggregated prediction scores, using all images where
the particular points are visible. An overview of the method is illustrated in Figure 1. A
more detailed description is provided in the following sections.

3.1 Render views

The objective of the point cloud rendering is to produce structured 2D-images that are
used as input to a CNN-based semantic segmentation algorithm. A variety of infor-
mation stemming from the point cloud can be projected onto the synthetic images. In

4 Felix Järemo Lawin et al.

Fig. 1: An overview of the proposed method. The input point cloud is projected into
multiple virtual camera views, generating 2D color, depth and surface normal images.
The images for each view are processed by a multi-stream CNN for semantic segmen-
tation. The output prediction scores from all views are fused into a single prediction for
each point, resulting in a 3D semantic segmentation of the point cloud.

this work we particularly investigate the use of depth, color, and normals. However, the
approach can be trivially extended to other features such as HHA [5] and other local
information extracted from the point cloud. In order to map the semantic information
back to the 3D points, we also need to keep track of the visibility of the projected points.

Our choice of rendering technique is a variant of point splatting [24,29], where the
points are projected with a spread function into the image plane. While other rendering

Deep Projective 3D Semantic Segmentation 5

Fig. 2: Example of rendering output. Left: color image. Right: label image.

techniques, such as surface reconstruction as in [12], require demanding preprocessing
steps of the point cloud in 3D space, splatting could be completely processed in image
space. This further enables efficient and easily parallelizable implementations, which is
essential for large-scale or dense point clouds.

Splatting-based rendering is performed by first projecting each 3D-point xi of the
point cloud into the image coordinates yi of a virtual camera. The projected points are
stored along with their corresponding depth values zi and feature vectors ci. The latter
can include, e.g., the RGB-color and normal vector of the point xi. The projection of a
3D-point is distributed by a Gaussian point spread function in the image plane,

wi,j = G(yi − pj , σ2) . (1)

Here, wi,j is the contributed weight of point xi to pixel j in the projected image. It
is obtained by evaluating an isotropic Gaussian kernel G with scale σ2 at the pixel
location pj . In order to reduce computational complexity, the kernel is truncated at a
distance r. However, point spread functions, which originate from different surfaces,
may still intersect in the image plane. Thus, the visibility of the projected points needs
to be determined to avoid contributions of occluded surfaces. Moreover, the sensor data
may contain significant foreground noise, such as scanning artifacts, which complicates
this task. The challenge is to exclude the contribution from the noise and the occluded
surfaces in the rendering process.

In traditional splatting [29], the resulting pixel value is obtained from the weighted
average of the point spread functions in an accumulated fashion, using the weights
wi,j . If the depth of a new point significantly differs from the current weighted average,
the pixel depth is either re-initialized with the new value if the point is closer than a
specific threshold, or discarded if it is further away [29]. However, this implies that the
resulting pixel value depends on both the threshold value and the order in which the

6 Felix Järemo Lawin et al.

points are projected. Furthermore, noise in the foreground will have significant impact
on the resulting images, as it is always rendered.

Similar to the method proposed in [19], we perform mean-shift clustering [24] of
the projected points in each pixel with respect to the depth zi weighted withwi,j using a
Gaussian kernel density estimatorG(d, s2), where s2 denotes the kernel width. Starting
from the depth value d0i = zi for each point i ∈ Ij that contributes to the current pixel
j, Ij = {i : ‖pj − yi‖ < r}, the following expression is iterated until convergence

dn+1
i =

∑
i∈Ij wi,jG(d

n
i − zi, s2)zi∑

i∈Ij wi,jG(dn − zi, s2)
. (2)

The iterative process determines a set of unique cluster centers {dk}K1 from the
converged iterates {dNi }i∈Ij . The kernel density of cluster center dk is given by,

vk =

∑
i∈Ij wi,jG(dk − zi, s2)∑

i∈Ij wi,j
. (3)

We rank the clusters with respect to the kernel density estimates and the cluster
centers,

sk = vk +
D

dk
. (4)

Here, the weight D rewards clusters that are near the camera. It is set such that fore-
ground noise and occluded points are not rendered. We chose the optimal cluster as
k̃ = argmaxk sk and set the depth value of pixel j to the corresponding cluster cen-
ter dk̃. The feature value is calculated as the weighted average, where the weight is
determined by the proximity to the chosen cluster,

ck̃ =

∑
i∈Ij wi,jG(dk̃ − zi, s2)ci∑
i∈Ij wi,jG(dk̃ − zi, s2)

. (5)

Since the indices i ∈ Ij of the contributing points i are stored, it is trivial to map the
semantic segmentation scores produced by the CNN back to the point cloud itself.

An example of the rendering output is shown in Figure 2.

3.2 Deep Multi Stream Image Segmentation

Following the current success of deep learning algorithms we deploy a CNN-based
algorithm for performing semantic segmentation on the rendered images. We consider
using multiple input modalities, which are combined using a multi-stream architecture
[23]. The predictions from the streams are fused in a sum layer, as proposed in [4].
The full multi stream network can thus be trained end-to-end. However, note that our
pipeline is agnostic to the applied image semantic segmentation approach.

In our method, each stream is processed using a Fully Convolutional Network
(FCN) [15]. However, as previously mentioned, any CNN architecture can be employed.
The FCN is based on the popular VGG16 network [22]. The weights in each stream are
initialized by pre-training on the ImageNet dataset [2]. In this work, we investigate dif-
ferent combinations of input streams, namely color, depth, and surface normals. While

Deep Projective 3D Semantic Segmentation 7

Fig. 3: Illustration of the proposed multi-stream architecture for 2D semantic segmen-
tation. Each input stream is processed by a Fully Convolutional Network[15]. The pre-
diction scores from each stream are summed to get the final prediction.

the RGB-stream naturally benefits from pre-training on ImageNet, this is also the case
for the depth stream. Previous work [3] has shown that a 3-channel jet colormap rep-
resentation of the depth image better benefits from pre-training on RGB datasets, such
as ImageNet. Finally, we also consider surface normals as input to a separate network
stream. For this purpose, we deploy an efficient algorithm for approximate normals
computation, which is based on direct differentiation of the depth map.

3.3 Score fusion

The deep network outputs a prediction score for each class for every pixel in the image.
The scores from each rendered view are mapped to the corresponding 3D points using
the indices i ∈ Ij as described in section 3.1. We fuse the scores by computing the
sum over all projections. Finally, the points are assigned the labels corresponding to the
largest sum of scores.

4 Experiments

4.1 Dataset

We conduct our experiments on the dataset Semantic3D [6], which provides a set of
large scale 3D point clouds of outdoor environments. The point clouds were acquired
by a laser scanner and include both urban and rural scenes. Colorization was performed
using a cube map generated from a set of high-resolution camera images. In total, the

8 Felix Järemo Lawin et al.

dataset contains 30 separate scans and over 4 billion 3D-points. The points are labeled
with 8 different semantic classes: man-made terrain, natural terrain, high vegetation,
low vegetation, buildings, hard scape, scanning artifacts, and cars.

4.2 Experimental setup

View selection In order to fully cover the point clouds in the rendered views, we collect
images by rotating the camera 360◦ around a fix vertical axes. For each 360◦ rotation,
we use 30 camera views at equally spaced angles. For each point cloud, we generate
four such scans with different pitch angles and translations of the camera, resulting in a
total of 120 camera views. To maintain a certain amount of contextual information, we
remove images where where more than 10% of the pixels have a depth less than five
meters. Furthermore, images with less than 5% coverage were discarded.

Network setup and training For the training we generated ground truth label images
by selecting the most commonly occurring label in the optimal cluster from section
3.1. An example is shown in Figure 2. In addition to the 8 provided classes, we also
included a 9th background class to label empty pixels, i.e pixels without any intersecting
point spread functions. We generated training data from the training set provided by
Semantic3D [6], consisting of 15 point clouds from different scenes. Our training data
set consists of 3132 labeled images including color, jet visualization of the depth, and
surface normals.

We investigate the proposed multi stream approach using color, depth and surface
normals streams as input. In order to determine the contribution of each input stream
we also evaluate network configurations with a single stream. Since some point clouds
may not have color information we also investigate a multi stream approach without the
color stream. All network configurations are listed in table 1.

Table 1: Network configurations with input streams in the left column
RGB D N RGB+D+N D+N

Color X X
Depth jet X X X
Surface normals X X X

All network configurations were trained using the same training parameters. We
trained for 45 epochs with a batch size of 16. The initial learning rate was set to 0.0001
and divided by two every tenth epoch. Following the recommendations from [14], we
used a momentum of 0.99. The networks were trained using MatConvNet [25].

4.3 Results and Discussions

We evaluated our method for the different network configurations on the reduced test
set provided by Semantic3D. The test set consists of four point clouds, containing 80

Deep Projective 3D Semantic Segmentation 9

Fig. 4: Qualitative results. Top: input point clouds. Bottom: Segmentation output using
our proposed RGB+D+N network.

million points in total. All points are assigned a class label j, which is compared to the
ground truth label i. A confusion matrix C is constructed, were each entry cij denotes
the number of points with the ground truth label i that are assigned the label j. The
quantitative measure provided by the benchmark [6] is the intersection over union for
each class i, given by

IoUi =
cii

cii +
∑

j 6=i cij +
∑

k 6=i ckj
. (6)

The over all accuracy is also provided and is given by

IoU =

∑
i cii∑

j

∑
jk cjk

. (7)

The evaluation results are shown in table 2. The single-stream network with RGB
and surface normals as input performs significantly better than the single-stream depth
network. However, the three streams seem to provide complementary information, and
give a significant gain in performance when used together. Our best multi-stream ap-
proach significantly improves over the previous state-of-the art method [8]. Also our
multi-stream approach without the color stream obtains results comparable to the pre-
vious state-of-the, showing that our method is applicable even if color information is
absent. Interestingly, even our single-stream approaches with only RGB or surface nor-
mals as input achieves a remarkable gain compared to the 3D-CNN based VoxNet
[6]. Figure 4 shows some qualitative results on the test set using our multi-stream
RBG+D+N network.

Note that we are using a simple heuristic for generating camera views, and a basic
segmentation network trained on limited data. Yet, we obtain very promising results.
Replacing these blocks with better alternatives should improve the results even further.
However, this is outside the scope of this paper.

10 Felix Järemo Lawin et al.

Table 2: Benchmark results on the reduced test set in Semantic3D [6]. IoU for categories
(1) man-made terrain, (2) natural terrain, (3) high vegetation, (4) low vegetation, (5)
buildings, (6) hard scape, (7) scanning artefacts, (8) cars.

Avg IoU OA IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8

TML-PCR[18] 0.384 0.740 0.726 0.730 0.485 0.224 0.707 0.050 0.000 0.150
DeepNet[6] 0.437 0.772 0.838 0.385 0.548 0.085 0.841 0.151 0.223 0.423
TLMC-MSR[8] 0.542 0.862 0.898 0.745 0.537 0.268 0.888 0.189 0.364 0.447

Ours RGB 0.515 0.854 0.759 0.791 0.720 0.335 0.857 0.209 0.123 0.326
Ours D 0.262 0.662 0.281 0.468 0.395 0.179 0.763 0.006 0.001 0.000
Ours N 0.511 0.846 0.815 0.622 0.679 0.164 0.903 0.251 0.186 0.470
Ours RGB+D+N 0.585 0.889 0.856 0.832 0.742 0.324 0.897 0.185 0.251 0.592
Ours D+N 0.543 0.872 0.839 0.736 0.717 0.210 0.909 0.153 0.204 0.574

5 Conclusion

We propose an approach for semantic segmentation of 3D point clouds that avoids
the limitations of 3D-CNNs. Our approach first projects the point cloud onto a set of
synthetic 2D-images. The corresponding images are then used as input to a 2D-CNN
for semantic segmentation. Consequently, the segmentation results are obtained by re-
projecting the prediction scores to the point cloud. We further investigate the impact
of multiple modalities in a multi-stream deep network architecture. Experiments are
performed on the Semantic3D dataset. Our approach outperforms existing methods and
sets a new state-of-the-art on this dataset.

References

1. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.Y.: Dis-
criminative learning of markov random fields for segmentation of 3d scan data. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2005), 20-26 June 2005, San Diego, CA, USA. pp. 169–176 (2005)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hier-
archical Image Database. In: CVPR09 (2009)

3. Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep
learning for robust rgb-d object recognition. In: Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. pp. 681–687. IEEE (2015)

4. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for
video action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 1933–1941 (2016),
http://dx.doi.org/10.1109/CVPR.2016.213

5. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from rgb-d images
for object detection and segmentation. In: European Conference on Computer Vision. pp.
345–360. Springer (2014)

6. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.: Se-
mantic3d. net: A new large-scale point cloud classification benchmark. arXiv preprint
arXiv:1704.03847 (2017)

Deep Projective 3D Semantic Segmentation 11

7. Hackel, T., Wegner, J.D., Schindle, K.: Fast semantic segmentation of 3d point clouds with
strongly varying density. In: ISPRS Annals - ISPRS Congress, Prague (2016)

8. Hackel, T., Wegner, J.D., Schindler, K.: Fast semantic segmentation of 3d point clouds with
strongly varying density. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Prague, Czech Republic 3, 177–184 (2016)

9. Huang, J., You, S.: Point cloud labeling using 3d convolutional neural network. In: Interna-
tional Conference on Pattern Recognition (ICPR) (2016)

10. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d
scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

11. Kähler, O., Reid, I.D.: Efficient 3d scene labeling using fields of trees. In: IEEE International
Conference on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013. pp.
3064–3071 (2013)

12. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Transactions on
Graphics (TOG) 32(3), 29 (2013)

13. Kim, B., Kohli, P., Savarese, S.: 3d scene understanding by voxel-crf. In: IEEE International
Conference on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013. pp.
1425–1432 (2013)

14. Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: Looking wider to see better. arXiv preprint
arXiv:1506.04579 (2015)

15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
3431–3440 (2015)

16. Martinovic, A., Knopp, J., Riemenschneider, H., Gool, L.J.V.: 3d all the way: Semantic seg-
mentation of urban scenes from start to end in 3d. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. pp. 4456–4465
(2015)

17. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time object
recognition. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Con-
ference on. pp. 922–928. IEEE (2015)

18. Montoya-Zegarra, J.A., Wegner, J.D., Ladickỳ, L., Schindler, K.: Mind the gap: modeling
local and global context in (road) networks. In: German Conference on Pattern Recognition.
pp. 212–223. Springer (2014)

19. Ogniewski, J., Forssén, P.E.: Pushing the limits for view prediction in video coding. In:
12th International Conference on Computer Vision Theory and Applications (VISAPP’17).
Scitepress Digital Library, Porto, Portugal (February-March 2017)

20. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view
cnns for object classification on 3d data. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 5648–5656
(2016)

21. Salti, S., Tombari, F., di Stefano, L.: SHOT: unique signatures of histograms for surface and
texture description. Computer Vision and Image Understanding 125, 251–264 (2014)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. CoRR abs/1409.1556 (2014)

23. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada. pp. 568–576 (2014), http://papers.nips.cc/paper/
5353-two-stream-convolutional-networks-for-action-recognition-in-videos

24. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer-Verlag New York, Inc.
(2010)

12 Felix Järemo Lawin et al.

25. Vedaldi, A., Lenc, K.: Matconvnet – convolutional neural networks for matlab. In: Proceed-
ing of the ACM Int. Conf. on Multimedia (2015)

26. Wolf, D., Prankl, J., Vincze, M.: Fast semantic segmentation of 3d point clouds using a
dense CRF with learned parameters. In: IEEE International Conference on Robotics and
Automation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015. pp. 4867–4873 (2015)

27. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep
representation for volumetric shapes. In: IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. pp. 1912–1920 (2015),
http://dx.doi.org/10.1109/CVPR.2015.7298801

28. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through
ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017)

29. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the
28th annual conference on Computer graphics and interactive techniques. pp. 371–378. ACM
(2001)

	Introduction
	Related Work
	Method
	Evaluation
	WP5 on the CENTAURO Robot
	Future Work
	Additional Work in Workpackage 5

