
The EU Framework Programme for Research and Innovation H2020
Research and Innovation Action

Deliverable D5.4 CENTAURO Walking Navigation

Dissemination Level: Public

Project acronym: CENTAURO

Project full title: Robust Mobility and Dexterous Manipulation in Disaster Response
by Fullbody Telepresence in a Centaur-like Robot

Grant agreement no.: 644839

Lead beneficiary: UBO – University of Bonn

Authors: T. Klamt, X. Chen, H. Karaoguz, S. Behnke

Work package: WP5 Navigation

Date of preparation: 2018-10-08

Type: Report

Version number: 1.0

CENTAURO – 644839 D5.4 Walking Navigation

Document History

Version Date Author Description
0.1 2018-05-16 TK First draft
0.2 2018-06-05 TK Add experiment sections
0.3 2018-06-25 XC Update cloud stair detection results, update

additional work
0.4 2018-06-26 TK Spell check and minor corrections
0.5 2018-06-28 TK Add missing section about UBO - KTH in-

tegration
0.6 2018-07-02 TK Changes after discussion with Sven

Behnke
0.7 2018-07-03 XC Updated figures in terrain classification

method and evaluation
0.8 2018-08-06 TK Incorporate LIU review
0.9 2018-10-08 TK Incorporate IIT review
1.0 Submitted version

2

CENTAURO – 644839 D5.4 Walking Navigation

Executive Summary

This deliverable describes extensions to the CENTAURO locomotion planning pipeline. One
of the outstanding features of the CENTAURO platform is the hybrid driving-stepping loco-
motion capability. To address this in a planning approach, it is not sufficient to handle each
locomotion type separately. A suitable navigation planner rather needs to address all the robot
capabilities in a single planning framework. The basic concept for such a planner was pre-
sented in Deliverable D5.3 CENTAURO Driving Navigation [3]. This deliverable focuses on
extensions of the approach, in particular stair detection and planning on multiple levels of ab-
straction. We also report additional work on learning navigation skills. The integration with the
CENTAURO robot platform is described in detail. The semantic terrain perception and hybrid
wheeled-legged locomotion planning are now ready for the final evaluation of the integrated
CENTAURO disaster-response system.

3

CENTAURO – 644839 D5.4 Walking Navigation

Contents

1 Introduction 5

2 Method Extensions 6

3 Evaluation 13

4 WP5 Integration 21

5 Conclusion 26

A Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction 27

B Learning Abstract Representations for Locomotion Planning in High-dimensional
Configuration Spaces 27

C Additional Work in Workpackage 5 27

4

CENTAURO – 644839 D5.4 Walking Navigation

1 Introduction
This deliverable reports on the extensions of the navigation planning system used for the Cen-
tauro robot within the CENTAURO project. One of Centauro’s unique features is its hybrid
wheeled-legged lower body design and the corresponding locomotion capabilities it provides:
Four legs with five degrees of freedom (DoF) each, ending in 360◦ steerable wheels. This en-
ables the robot to perform omnidirectional driving locomotion as well as walking locomotion.
Moreover, the robot can perform manoeuvres, which can neither be performed by pure driving
nor by pure walking robots, such as moving individual feet while keeping ground contact. To
take those capabilities into account when planning locomotion, the planning component needs
to consider and integrate the driving and walking mobility of the robot together in the loco-
motion planning problem. This planning component is already described in ”Deliverable D5.3
CENTAURO Driving Navigation” [3]. Fig. 1 visualizes the system architecture. This ”Deliv-
erable D5.4 CENTAURO Walking Navigation” reports on modifications and extension to the
components Terrain Classification and Hybrid Path Planner. The Terrain Classification module
is extended by geometrical-based and image-based stairs detection to increase the semantics in
typical indoor environments. The Hybrid Path Planner is improved in its capability to generate
abstract representations.

Further additional work which has been performed in the context of this work package is
described in C.

Figure 1: CENTAURO locomotion planning system architecture.

1 INTRODUCTION 5

CENTAURO – 644839 D5.4 Walking Navigation

2 Method Extensions
Different parts of the locomotion planning pipeline are improved. Detection is enriched by
stairs detection, both from point clouds and RGB images. This increases the semantics of
the environment representation, especially for typical indoor environments. The search-based
planner is improved in its capability to generate abstract representations.

2.1 Stairs Detection
To enrich the output of the Terrain Classification component, stairs detection modules are
added. Two methods are used which rely on RGB images (see Sec. 2.1.1) and geometric point
clouds (see Sec. 2.1.2). The results are merged with the other terrain classification results in
a random forest classifier, as described in ”Deliverable D5.2 CENTAURO Terrain Classifica-
tion” [1].

2.1.1 Image-based Stairs Detection

For detecting stairs using image data, we have employed a Dilated Residual Network (DRN)
[9]. The reason for using a DRN compared to a regular CNN architecture is that DRN has
more detailed activation maps compared to a regular CNN architecture. This is shown in Fig. 2.
As we go deeper in the regular ResNet, the activation maps get coarser. However, in DRN
architecture, thanks to the dilation operation, the activation maps do not shrink. As a result the
performance of the DRN is better than the regular ResNet without a big memory penalty.

For stairs detection, we have used the 54-layer Encoder/Decoder architecture of DRN. We
have used 100 images for training and 20 images for validation. Data augmentation is applied on
the fly to increase the training data variability. Moreover we have added class-specific weights in
the loss function to improve the segmentation result. We have setup the stairs detection problem
as pixel-wise binary classification. A pixel can be labeled either as a stairs or as background.

Figure 2: The architectural difference between a regular ResNet and DRN [9].

2 METHOD EXTENSIONS 6

CENTAURO – 644839 D5.4 Walking Navigation

The output of this network is a pixel-wise probability map of an input image. Some of the
obtained results are given in Fig. 3. Here, the pink color represents the pixel with stairs label
while the purple color represents the background.

2.1.2 Point Cloud based Stairs Detection

The method receives the full registered point cloud as its input. Initial preprocessing steps
include voxel grid filtering to downsample and passthrough filtering to reduce the field of view.
The resulting cloud is fed into a RANSAC plane segmentation method that extracts horizontal
planes from the scene. The next step is to extract certain metrics like width, depth, height and
orientation in the world frame. This is achieved through Principal Component Analysis of the
found planes, the results are used to filter out planes that can be ignored, e.g., planes big enough
to be driven on or planes not wide for the robot. By searching through all the metrics of the
planes, cases that fit the model of a staircase are labeled as staircases. The pipeline for stairs
detection is shown in Fig. 4.

A fit is considered reasonable if the planes are similar in width and depth, and have constant
height difference between consecutive steps. Additionally, in cases where the vertical planes on
a staircase are visible, they are used to obtain and verify if the orientation of each step matches
the normals of the vertical planes. Fig. 5 and Fig. 6 show the detection examples for detecting
upstairs and downstairs cases. In Fig. 5 the robot is at the foot of the stairs, the resulting point
cloud in these cases was found to not have reliable planes (insufficient point density) after the
first few steps. To mitigate this, after a hypothesis (step metrics constituting a staircase) is
generated with three horizontal steps, vertical planes are used to test it. In Fig. 6, this extra step
is not necessary and the results obtained only with horizontal planes are satisfactory.

Figure 3: Example stairs detection results.

Figure 4: Pipeline for stairs detection using point cloud.

2 METHOD EXTENSIONS 7

CENTAURO – 644839 D5.4 Walking Navigation

Figure 5: Example of upstairs detection. The left image shows the raw RGB image from Kinect
and the right image shows the stairs detected from the point cloud.

Figure 6: Example of downstairs detection. The left image shows the raw RGB image from
Kinect and the right image shows the stairs detected from the point cloud.

2.2 Search-based Planning on Multiple Levels of Representation
In ”Deliverable D5.3 CENTAURO Driving Navigation” [3] we described the general approach
of a search-based planner for hybrid driving-stepping locomotion. To enable this planner to
plan for larger scenarios, we presented an extension to plan on multiple levels of representation:
With increasing distance from the robot, the environment and action resolution gets coarser. In
addition, the number of DoF of the robot representation which we call representation dimen-
sionality decreases with increasing distance from the robot. Such abstraction comes along with
a loss of information, which we compensate by enriching the environment representation with
additional semantic features such as height differences and terrain classes. Hence, while the
representation gets less precise, the understanding of the scene increases. Experiments show
that such planning on multiple levels of representation significantly accelerates planning by
multiple orders of magnitude and thus enables the planner to solve for larger scenarios. The
concept of the different levels of representation is visualized in Fig. 7 and Fig. 8.

In the detailed planning, the robot is represented with seven DoF (degrees of freedom)
(x, y, θ for the robot base, f1, ..., f4 for individual relative longitudinal foot positions). This
representation is referred to as Level 1 representation. As described in ”Deliverable D5.3
CENTAURO Driving Navigation” [3], two abstractions are applied to the robot representation
to generate representations for the more abstract representations Level 2 and Level 3:

• Level 2: Combine the two front and the two rear feet to foot pairs which results in a 5D
representation (x, y, θ, ff , fr).

• Level 3: Fix all feet to the robot base and neglect their individual configuration which
results in a 3D representation (x, y, θ).

2 METHOD EXTENSIONS 8

CENTAURO – 644839 D5.4 Walking Navigation

Figure 7: The search-based planner includes three levels of representation with decreasing res-
olution and robot configuration dimensionality. To compensate the loss of information, the
semantics for both the environment representation and the robot actions increase.

Figure 8: Size and position of the different levels of representation. Level 1 covers the vicinity
of the robot. Level 2 is also robot centered and medium sized. Level 3 covers the whole map.

Unfortunately, those abstract representations cause restrictions to the feasibility of certain
robot configurations. E.g., if the robot should step up on a height difference which is not aligned
with the robot orientation, the Level 2 representation could estimate this situation as infeasible
because it could not find a solution with identical longitudinal positions for two neighboring
feet while there exists a feasible solution for this scenario in Level 1. Similar, the Level 3
representation neglects the detailed foot position and instead assumes them to be fixed. Again,
such simplification leads to situations in which the Level 3 representation assesses a scenario
as not traversable while the Level 1 representation finds a path. A modification of the abstract
robot representations is presented in Sec. 2.2.1.

A modification of the used heuristic comes along with an updated robot representation and
is described in Sec. 2.2.2. Moreover, we present a method for continues refinement which
accelerates replanning during path execution (see Sec. 2.2.3).

2.2.1 Robot Representation for Search-based Planning on Multiple Levels of Represen-
tations

We propose a modification to the concept of planning on multiple levels of representation to
solve the above mentioned problems. Similar to the previous work, the robot representation gets
more abstract by combining the two front/rear feet to foot pairs or by completely neglecting the
individual foot positions. To compensate for the loss of information which comes along with
this abstraction, we introduce foot areas: Instead of planning with the detailed foot positions,
we define areas in which the feet could be placed, and consider those in the planning.

In the Level 2 robot representation, the two front and the two rear feet are still combined
to foot pairs which results in a 5-dimensional robot representation. For each foot a certain foot
area is determined. In the Level 3 robot representation, one large area around and under the
robot is defined in which all four feet are positioned. The action cost functions for the abstract
representations are tuned manually so that they match closely to the Level 1 costs of the same

2 METHOD EXTENSIONS 9

CENTAURO – 644839 D5.4 Walking Navigation

Figure 9: Three levels of representation with updated robot representations.

actions (described in [6]). A set of simple tasks is used for this parametrization. Fig. 9 visualizes
the new proposed robot representations.

A further problem of the abstract robot representations described in ”Deliverable D5.3 CEN-
TAURO Driving Navigation” [3] can be found when planning to overcome stairs in Level 3. In
the current state, the planner only considers foot movements in longitudinal direction. Thus,
the robot is not able to climb stairs sideways. This property is considered in Level 1 and Level 2
where only longitudinal steps are considered in the planning. However, Level 3 describes such
a situation more abstract. The robot moves over the terrain while costs are generated by the
terrain classes in the foot area under and around the robot. Individual foot actions are not con-
sidered. Hence, it is possible to plan paths in which the robot climbs stairs laterally, which
cannot be performed by the real robot due to restricted leg reachability.

This is solved by enriching the Level 3 terrain class features with additional information
about step orientation. First, we search for cells of the terrain type step. This is done by
searching for cell pairs ci and cj that fulfill the following criteria:

• 4H(ci) < 4Hmax,drive: ci is on a drivable surface,

• 4H(cj) < 4Hmax,drive: cj is on a drivable surface,

• ‖ci − cj‖ < 0.45 m: The distance between ci and cj is within a maximum step length, and

• for the set T of cells ck on the straight line between ci and cj , CGC(ck) = ∞ counts for
all cells ck ∈ T : A direct foot movement from ci to cj requires a step,

where 4H describes the height difference at a given cell and 4Hmax,drive is the maximum al-
lowed height difference for a drivable surface. CGC describes the ground contact costs of a given
cell. For all pairs of ci and cj which fulfill these criteria, each cell cs ∈ ci ∪ cj ∪ T is assigned
the terrain class step. In addition, we compute the angle αi,j between ci and cj and save it for cs.
Since most step cells are detected several times, we collect several angles for each cell. αavg,s,
the mean of circular quantities of these angles describes the estimated step orientation in cs.
Fig. 10 b shows a terrain class map with visualized step orientations.

When moving over step cells, a robot state is only feasible if the difference between the
robot orientation and the step orientation of each step cell cr is less than one discrete orientation
step: abs(αavg,r − rθ) <

1
16
· 2π. Moreover, the robot is only allowed to move parallel and

orthogonal to step orientations. These restrictions are required to enforce a behavior, which
is induced by the robot kinematic in lower representation levels but not represented in Level 3
otherwise.

The performance of this new approach is evaluated in Section 3.2. Our earlier work [5]
describes the search-based planning for hybrid driving-stepping locomotion. The concept to
extend this to plan on multiple levels of representations is described in detail in [6].

2 METHOD EXTENSIONS 10

CENTAURO – 644839 D5.4 Walking Navigation

Figure 10: Level 3: a) height map, b) terrain class map (white = flat, blue = stepping, pink =
wall, black lines = step orientations), c) robot area cost map for the orientation indicated by the
red arrow.

Figure 11: As the robot moves along the path, the Level 1 and Level 2 representations move
with it. Consequently, those path segments which are represented in a higher level and for
which a more detailed representation becomes available, can be refined to this more detailed
representation.

2.2.2 Heuristic Based on an Abstract Representation

In ”Deliverable D5.3 CENTAURO Driving Navigation” [3] we proposed a heuristic which was
based on the abstract Level 3 representation and showed very promising results. Since the
Level 3 robot representation changed, the heuristic had to be updated as well.

After the goal pose ~ri,G is set, it is transformed to Level 3. We then start a one-to-any 3D
Dijkstra search in Level 3 starting from ~r3,G. Hence, we get for each Level 3 pose in the map an
estimation of the costs to reach the goal pose. During path planning, we can estimate the costs
from any robot pose to the goal by transforming it to Level 3 and get the respective cost value.

Note that the quality of this heuristic strongly depends on the quality of the Level 3 cost
model in comparison to costs for the same manoeuvres in other levels of representation. Further
note that we cannot prove that this heuristic always underestimates costs, which is necessary
to prove admissibility for the generation of optimal paths. However, since we also utilize the
sub-optimal ARA* algorithm, we do not aim to generate optimal paths for a given problem. In
fact, we focus on generating paths with satisfying quality in feasible time. The performance of
this heuristic is evaluated in Section 3.3.

2.2.3 Continuous Refinement

As the robot moves along the initial path, the sensors provide new measurements and high-
detailed environment representations are generated in the vicinity of the current robot position.
We include these updated representations in the path by continuously refining the respective
path segments, as shown in Fig. 11. If a cost difference > 25% between the original and the
refined path segments indicates that the higher-level planning assessed a situation wrongly, we
initiate a new planner run. With this approach, we can guarantee that path segments in the

2 METHOD EXTENSIONS 11

CENTAURO – 644839 D5.4 Walking Navigation

vicinity of the robot are always represented in Level 1 and thus, included steps can be expanded
and the result can be executed by the controller.

2 METHOD EXTENSIONS 12

CENTAURO – 644839 D5.4 Walking Navigation

3 Evaluation

3.1 Terrain Classification
Data collection efforts were made to evaluate the system as a whole. The trials were performed
both at KTH and UBO. The terrain classification was tested on both recorded data sets.

3.1.1 Data Collection at KTH

In order to train the image and the cloud based stairs detectors, additional data was required.
Therefore, the Pluto robot at KTH RPL Lab was modified to have a similar sensory setup as
the Centauro robot. Fig. 12 shows some data collection efforts at KTH. After three days of data
collection at different areas of Stockholm, data from 64 different scenes, which correspond to
80 gigabytes of data, has been collected. The data consists of point clouds, RGB frames and
robot related information.

Figure 12: A scene from data collection efforts at KTH.

Figure 13: Example scenery at UBO.

3 EVALUATION 13

CENTAURO – 644839 D5.4 Walking Navigation

Table 1: Obtained results for KTH data set.

No. of training images No. of test images Mean class accuracy on test data (%)
30 5 92
25 10 88
20 15 87
15 20 85

3.1.2 Data Collection at UBO

During the integration efforts between KTH and UBO, significant amount of data has been
collected at UBO. The Momaro platform, which has an identical sensor head as the Centauro
robot with a rotating Velodyne Puck laser scanner and a Microsoft Kinect V2, was used. In
order to collect relevant sensory data, an artificial terrain scenario given in Fig. 13 has been
created. Then the robot was positioned at different locations and distances in order to collect
data from varying fields of view. In addition, data from staircases located in the building has
been collected.

In total, 29 ROS bags have been recorded which corresponds to 21 gigabytes of data. The
data includes laser scanner point clouds, image and depth frames from Kinect, and robot related
information such as joint states.

3.1.3 Terrain Classification Results – KTH Data Set

We have evaluated our terrain classification pipeline on KTH data set. We have randomly shuf-
fled the number of training and test data with different ratios to fully evaluate the method. The
training data was always different from the test data. Our obtained results based on mean class
accuracy is given in Table 1. From the table, it is observed that even though the training data
ratio decreases significantly, the mean class accuracy stays over 85%. Fig. 14 shows processing
steps of the terrain classification pipeline for an example image.

3.1.4 Terrain Classification Results – UBO Data Set

Our terrain classification pipeline is evaluated also on the UBO data set. In this data set, 22
scenes were selected as training data while 7 were selected as test data. The obtained mean
class accuracy for this setting is 89%. Fig. 15 shows some example results obtained from this
data set. From the results, it is observed that irregular stair configurations such as the one
shown in Fig. 15 top row, can cause the stairs detection system to fail. Nevertheless, most of
the remaining parts of the stairs are seen as obstacle, which makes sense according to the given
circumstances.

3.2 Planning on Multiple Levels of Representation
The planning performance of the different levels of representation is tested in an indoor sce-
nario. It is shown in Fig. 16. Planning queries are executed on each level of representation
individually to compare the quality of each representation. In addition, planning on combined
levels of representation, as shown in Fig. 8, is tested. For this, we choose the Level 1 size to be
3×3 m. This is sufficiently large to plan the next robot manoeuvres in high detail, but still small
enough to avoid long high-dimensional planning. The Level 2 size is chosen to be 9×9 m so that

3 EVALUATION 14

CENTAURO – 644839 D5.4 Walking Navigation

Figure 14: The processing steps of the terrain classification pipeline for an example image.

(a) Image (b) Ground truth labels (c) Predicted labels

(d) Image (e) Ground truth labels (f) Predicted labels

Figure 15: Example terrain classification results from UBO data set.

3 EVALUATION 15

CENTAURO – 644839 D5.4 Walking Navigation

Figure 16: Height map of the first experiment scenario. From its start position (red arrow),
the robot needs to navigate between multiple objects (a), over a bar obstacle (b), step up to an
elevated platform and through a door (c) to the goal pose (green arrow). The resulting path
forW = 1.125 and combined levels of representation is shown. Level 1 path segments = red,
Level 2 segments = blue, Level 3 segments = green. Arrows show rθ.

Figure 17: Planning performance for different levels and differentW for the first experiment.
estimated costs = yellow, refined Level 1 costs = blue.

the Level 2 path segment is about twice as long as the Level 1 path segment. The used heuristic
is the Euclidean heuristic, a combination of the Euclidean distance and orientation difference.
Since we use an ARA* algorithm which works with several heuristic weightsW , we evaluate
the influence of these. Fig. 17 shows the planner performance.

All experiments are done on one core of a 2.6 GHz Intel i7-6700HQ processor using 16 GB
of memory. An additional video is available online1 which also contains a Gazebo experiment
to demonstrate the continuous refinement strategy.

It can be seen that planning on levels of representation >1, and with combined levels, is
faster by at least one order of magnitude compared to pure Level 1 planning. The Level 1 path
for W = 1.0 could not be computed due to memory limitations. We distinguish between the

1https://www.ais.uni-bonn.de/videos/ICRA_2018_Klamt/

3 EVALUATION 16

https://www.ais.uni-bonn.de/videos/ICRA_2018_Klamt/

CENTAURO – 644839 D5.4 Walking Navigation

Figure 18: Height map for the second experiment containing a bar obstacle (I), a rough area
(II), a door (III), a flight of stairs (VI) and two obstacles (V). a - d are different starting poses
for the planner, e is the goal pose.

path costs in the respective levels of representation (estimated cost) and the costs each path
carries when refined to Level 1. Comparing the estimated costs to the refined Level 1 costs
gives an assessment about the quality of cost generation in each level of representation. The
comparison of the refined Level 1 costs to the original Level 1 costs indicates the quality of the
resulting path. It can be seen that the estimated costs always underestimate the refined Level 1
costs. Especially forW ≤ 1.5 the estimation is close with a difference ≤ 7.7%. Furthermore,
the results show that forW ≤ 1.5 the refined Level 1 costs differ to the original Level 1 costs
by ≤ 15%.

3.3 Abstract Representation-based Heuristic
The Dijkstra heuristic, presented in Sec. 2.2.2, is compared to the Euclidean heuristic in a
larger and more challenging scenario, shown in Fig. 18. The robot starts at pose a. Planning is
performed on combined levels of representation. A resulting path is shown in Fig. 19. Planning
times and resulting costs are shown in Fig. 20. Preprocessing the Dijkstra heuristic took 0.52 s
which is already included in the presented planning times.

It can be seen that the Dijkstra heuristic further accelerates planning while the resulting
costs stay comparable at least for W ≤ 1.5. E.g., for W = 1.25, planning is accelerated by
more than two orders of magnitude while the refined path costs only differ by 3.3%. Moreover,
the resulting path illustrates how the robot aligns with the stairs and only moves parallel and
orthogonal to them.

We finally compare the planner performance when started from different poses, as shown in
Fig. 18. The results in Fig. 21 indicate that an important factor for the planner performance is
the complexity of the planning within Level 1, but higher W lead to feasible performances in
any case.

3 EVALUATION 17

CENTAURO – 644839 D5.4 Walking Navigation

Figure 19: Resulting path for planning with the Dijkstra heuristic and combined levels with
W = 1.25.

Figure 20: Planning performance for combined levels of representation to compare the Eu-
clidean heuristic with the Dijkstra heuristic. Red lines indicate the cost estimation for the path
by each heuristic.

Figure 21: Planning time for different starting poses (see Fig. 18) and different W , using the
Dijkstra heuristic.

3 EVALUATION 18

CENTAURO – 644839 D5.4 Walking Navigation

Figure 22: Pipeline overview of the approach to generate abstract representations with a CNN
to support planning.

Figure 23: Architecture of the proposed CNN to represent the environment and cost function of
an abstract planning representation.

3.4 Learning Abstract Representations for Locomotion Planning in High-
dimensional Configuration Spaces

Planning hybrid driving-stepping locomotion on multiple levels showed promising results since
planning was accelerated by multiple orders of magnitude while path quality stayed compara-
ble. Especially the employment of the most abstract representation as an informed heuristic
was helpful. However, the generation of abstract environment representations and cost func-
tions requires extensive manual tuning. Hence, it is an idea to use CNNs to represent abstract
representations. While a desired robot representation and action set can be easily defined, the
tuning-intensive environment representation and cost function are represented as a CNN. Fig-
ure 22 gives an overview over the pipeline and Fig. 23 shows the CNN architecture.

Input to the CNN is a height map patch of a fixed size which represents the environment in
the vicinity of the robot. The local robot start pose is defined to be always in the center of this
map patch with a fixed orientation. In addition a desired local 3D goal pose (x, y, yaw of the
robot base) is input to the network. The network outputs a feasibility value which indicates if
a feasible path from the robot start pose to the robot goal pose exists. In addition, the network

3 EVALUATION 19

CENTAURO – 644839 D5.4 Walking Navigation

Table 2: Abstraction quality evaluation

random simulated real

Ø Cd 0.476 0.466 0.509
Std. dev.(Cd) 0.222 0.202 0.236
feasibility correct, CNN 95.04% 96.69% 92.62%
Ø Ca,CNN 0.453 0.469 0.446
Ø Error(Ca,CNN) 0.027 0.013 0.081
feasibility correct, man.tuned 79.27% 65.35% 69.77%
Ø Ca,man.tuned 0.435 0.402 0.429
Ø Error(Ca,man.tuned) 0.057 0.021 0.103

outputs a cost estimation which describes the expected costs in case a feasible path exists.
To generate a heuristic, a 3D one-to-any Dijkstra search is started at the global goal pose

set by the operator. It generates a cost estimation from each 3D base pose in the map to the
global goal pose while using the coarse resolution of the abstract representation and neglecting
foot configurations. This cost estimation to the goal can be used as a powerful and informed
heuristic for planning in the detailed representation.

Training of the network is done on randomly generated artificial data, but it generalizes
well to the abstraction of real world scenes. Table 2 compares the abstraction quality of this
approach to the manually tuned abstract representation described above. The performance is
measured on three datasets containing randomly generated artificial data (different from the
training data), height maps from simulation, and height maps which come from real world
laser scanner measurements. The CNN outperforms the manually tuned approach on all three
datasets. More details can be found in [4], which is attached to this document.

3 EVALUATION 20

CENTAURO – 644839 D5.4 Walking Navigation

Figure 24: Sensor head of the mobile manipulation robot Momaro, built by UBO. It possesses
a rotating Velodyne Puck laser scanner with spherical field of view, a Microsoft Kinect V2 and
three Pointgrey cameras. The sensor head setup is similar to the Centauro sensor head.

4 WP5 Integration

4.1 Integration of the Terrain Classification and the Locomotion Planner
During a bilateral integration meeting between UBO and KTH in Bonn, the terrain classification
module was integrated with the hybrid locomotion planner module. Data was collected with the
sensor head of the Momaro robot, which is similar to the Centauro sensor head (see Fig. 24).

The data pipeline for the environment representation for navigation planning is visualized
in Fig. 25 with example data. Two environment representations had to be fused:

• The UBO navigation environment representation, which uses point clouds and generates
a 2D height map with high resolution (2.5 cm), and

• the KTH terrain classification representation which uses RGB images from the Kinect V2
and point clouds to generate a terrain class map with a resolution of 5 cm.

Both maps have been fused in the cost map representation successfully, which is used for nav-
igation planning. It can be seen that the height map causes a detailed traversability assessment
while the terrain class map enriches this representation with additional information (e.g., risky
assessment for grass or gravel). Moreover, it can be seen that the terrain class map shows in-
consistencies and does not assess given areas of the same terrain class (e.g., grass) continuously
which needs to be improved.

4 WP5 INTEGRATION 21

CENTAURO – 644839 D5.4 Walking Navigation

RGB Kinect image Registered pointcloud

Terrain class map

olive = unknown
white = safe
grey = risky
yellow = obstacle
red = stair

Height map

Cost map
olive = unknow
yellow = untraversable by driving

Figure 25: Data pipeline for navigation planning environment representation. Input are Kinect
V2 RGB images and registered point clouds from the Momaro sensor head. Both are fed into
the terrain classification module which outputs a terrain class map. In parallel a 2D height map
is generated from the point clouds. Both maps are fused to a cost map.

4 WP5 INTEGRATION 22

CENTAURO – 644839 D5.4 Walking Navigation

Figure 26: Current robot position (light red), goal pose (red/blue) and generated hybrid locomo-
tion path (red), visualized on a cost map of the scenario. Olive areas are unknown, yellow areas
are untraversable by driving, greyscale cells show foot costs where white is cheap and black is
expensive.

4.2 Integration of the Locomotion Planner on the Centauro Platform
During a bilateral integration meeting between UBO and IIT in Genoa, the locomotion plan-
ner pipeline was tested on the Centauro platform. Data from the rotating Velodyne Puck laser
scanner was processed to registered point clouds. These were processed to height maps which
are input to the generation of cost maps. An exemplary cost map of Centauro standing in front
of some stairs in the Lab in Genoa can be seen in Fig. 26. The only user input is a robot goal
pose (position and orientation). A hybrid driving-stepping locomotion plan to this goal pose is
planned on the cost maps. Fig. 26 also shows a given goal pose and a generated path.

Subsequently, this path is executed by the respective hybrid locomotion controller. Fig. 27
shows, how Centauro climbs these stairs autonomously.

In comparison to the Momaro platform, which was used for former experiments, there were
some modifications necessary:

• The legs of Centauro are shorter compared to Momaro. Changing the respective planning
parameters for maximum feasible leg length results in a different gait. Centauro takes at
maximum one step between its front and rear legs (∼ 0.6 m) while Momaro took up to
two steps between its legs (∼ 0.9 m). Furthermore, the ankle pitch had to be incorporated
while stepping to avoid collisions with the terrain (see Fig. 27, front right foot in top right
figure).

• The shorter leg length also restricts the possibility to adjust the longitudinal CoM position
through base shifts to stabilize for stepping. Instead, different arm positions in different
stepping phases are used for additional balancing.

In general, the experiments with the real Centauro robot showed that the real robot behaved
very similar to the simulated robot, which demonstrates the high value of simulation as a de-
velopment tool. When transferring the planning from the simulation to the robot, one issue

4 WP5 INTEGRATION 23

CENTAURO – 644839 D5.4 Walking Navigation

Figure 27: Centauro climbing stairs: The robot approaches the stairs by omnidirectional driving
(top left) and includes stepping motions to climb the stairs while balancing through base roll
and pitch motions (top right). Before reaching the top platform it moves its arms forward for a
better center of mass (CoM) position (bottom left), and finally climbs with its back feet (bottom
right).

4 WP5 INTEGRATION 24

CENTAURO – 644839 D5.4 Walking Navigation

occurred in the context of localization. While the simulated robot uses perfect odometry from
the simulator, the real robot has to estimate its state by fusing input from laser scanner local-
ization, wheel odometry and IMU. It is very important that the wheel odometry incorporates
information about the robot pitch and roll angles as well as contact detections of each foot to
provide a suitable estimate. The localization could be improved by including all these infor-
mation correctly in the state estimation. In the performed experiments, some minor position
corrections through joystick inputs were necessary due to slight mislocalizations.

4 WP5 INTEGRATION 25

CENTAURO – 644839 D5.4 Walking Navigation

5 Conclusion
Since the originally intended content of this deliverable —walking navigation planning— has
been already reported in the previous deliverable [3], this deliverable describes extensions which
improve the system performance and applicability to the considered disaster response-typical
scenarios.

In particular, terrain classification has been extended to also classify stairs, based on ge-
ometric and image data. The planner module, which uses abstract representations for plan-
ning acceleration, has been modified to abstract robot representations whose characteristics are
closer to the original, detailed planning representation and thus provide a better abstraction.
Both modifications have been evaluated.

Moreover, we describe progress in the integration of the different modules towards a system
which is running on the Centauro robot. The status of integration is close to finalization since
most parts of the pipeline have been tested on the Centauro robot and all other components have
been tested on a similar setup.

Overall, the developed components are ready for the final evaluation of the integrated CEN-
TAURO disaster-response system. Remaining work in WP7 – Integration will focus on the
optimization of the individual components and the final integration. In particular, we plan to

• further improve the terrain classification results for stairs and for the random forest clas-
sifier which merges all terrain class results into one terrain class map that can be used by
the planner,

• optimize leg movements during stepping actions, and

• test the terrain classification within the whole locomotion planning pipeline of the Cen-
tauro robot.

5 CONCLUSION 26

CENTAURO – 644839 D5.4 Walking Navigation

A Planning Hybrid Driving-Stepping Locomotion on Multi-
ple Levels of Abstraction

The concept of planning hybrid driving-stepping locomotion on multiple levels of abstraction
is described in detail in [6] which is also attached to this document.

B Learning Abstract Representations for Locomotion Plan-
ning in High-dimensional Configuration Spaces

The concept of learning abstract representations for locomotion planning in high-dimensional
configuration spaces is described in detail in [4] which is also attached to this document.

C Additional Work in Workpackage 5

C.1 Value Iteration Networks on Multiple Levels of Abstraction
While traditional search- and sample-based planning methods tend to perform extensive searches
in large high-dimensional configuration spaces, learning-based approaches follow a different
idea. They assess a situation and directly derive a suitable path. One method which arose large
interest in the community is Value Iteration Networks (VINs) [8]. However, similar to other
learning-based planners, VINs are only applicable to small low-dimensional state spaces since
the required network complexity and amount of training data rapidly increases for larger spaces.
We propose a method to utilize VINs to multiple levels of abstraction to enable them to handle
larger scenes. This enables us to handle significantly larger queries and plan omnidirectional
driving with the Centauro robot in cluttered environments. Further details can be found in [7]
which is also attached to this document.

C.2 Local Planner using Deep Reinforcement Learning
In our previous work described in ”Deliverable D5.3 CENTAURO Driving Navigation”, we
set up a framework which learns a local planner with a five-dimensional action space using a
proximal policy optimization (PPO) algorithm developed by OpenAI. In our current work, we
extend our approach to train action policies to acquire more complex navigation skills. The
policy maps height-map image observations to motor commands to navigate to a target position
while avoiding obstacles. We propose to acquire the multifaceted navigation skill by learning
and exploiting a number of manageable navigation behaviors. We also introduce a domain
randomization technique to improve the versatility of the training samples.

The algorithm is described in detail in [2].

C ADDITIONAL WORK IN WORKPACKAGE 5 27

CENTAURO – 644839 D5.4 Walking Navigation

References
[1] X. Chen, F. Schilling, T. Klamt, and P. Jensfelt. Deliverable D5.2 CENTAURO Terrain

Classification.

[2] Xi Chen, Ali Ghadirzadeh, John Folkesson, and Patric Jensfelt. Deep reinforcement learn-
ing to acquire navigation skills for wheel-legged robots in complex environments. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.

[3] T. Klamt, P. Jensfelt, X. Chen, K. Nordberg, and D. Doreschel. Deliverable D5.3 CEN-
TAURO Driving Navigation.

[4] Tobias Klamt and Sven Behnke. Learning abstract representations for locomotion planning
in high-dimensional configuration spaces. Submitted to IEEE International Conference on
Robotics and Automation (ICRA), 2019.

[5] Tobias Klamt and Sven Behnke. Anytime hybrid driving-stepping locomotion planning. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

[6] Tobias Klamt and Sven Behnke. Planning hybrid driving-stepping locomotion on multi-
ple levels of abstraction. In IEEE International Conference on Robotics and Automation
(ICRA), 2018.

[7] Daniel Schleich, Tobias Klamt, and Sven Behnke. Value iteration networks on multiple
levels of abstraction. Submitted to IEEE International Conference on Robotics and Au-
tomation (ICRA), 2019.

[8] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration
networks. In Advances in Neural Information Processing Systems (NIPS), 2016.

[9] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In Com-
puter Vision and Pattern Recognition (CVPR), 2017.

REFERENCES 28

Planning Hybrid Driving-Stepping Locomotion
on Multiple Levels of Abstraction

Tobias Klamt and Sven Behnke

Abstract— Navigating in search and rescue environments is
challenging, since a variety of terrains has to be considered.
Hybrid driving-stepping locomotion, as provided by our robot
Momaro, is a promising approach. Similar to other locomotion
methods, it incorporates many degrees of freedom—offering
high flexibility but making planning computationally expensive
for larger environments.

We propose a navigation planning method, which unifies
different levels of representation in a single planner. In the
vicinity of the robot, it provides plans with a fine resolution
and a high robot state dimensionality. With increasing distance
from the robot, plans become coarser and the robot state di-
mensionality decreases. We compensate this loss of information
by enriching coarser representations with additional semantics.
Experiments show that the proposed planner provides plans for
large, challenging scenarios in feasible time.

I. INTRODUCTION

Hybrid driving-stepping locomotion is a flexible approach
to traverse many types of terrain since it combines the
advantages of both, wheeled and legged, locomotion types.
However, due to its high robot state dimensionality, planning
respective paths is challenging.

In our previous work [1] we presented an approach to
plan hybrid driving-stepping locomotion paths for our robot
Momaro [2] even for very challenging terrain such as stair-
cases with additional obstacles on it. The planner prefers
omnidirectional driving whenever possible and considers
individual steps in situations where driving is not possible.
The individual configuration of ground contact points (robot
footprint) is considered at any time. During planning, steps
are represented as abstract manoeuvres which are expanded
to detailed motion sequences before executing them. For
small scenarios, this method generates high quality paths in
feasible time with bounded suboptimality. Due to the high
dimensionality of the robot configuration, the explored state
space increases rapidly for larger scenarios and makes plan-
ning expensive. This effect is not unique for hybrid driving-
stepping locomotion but affects high-dimensional planning
in many applications such as locomotion planning for robots
with tracked flippers or manipulation planning.

The search space can be reduced by choosing a coarser
resolution or describing the robot and its manoeuvres in
a more abstract way with less degrees of freedom (DoF).
However, a fine resolution is key to navigate the robot

All authors are with Rheinische Friedrich-Wilhelms-Universität
Bonn, Computer Science Institute VI, Autonomous Intelligent
Systems, Endenicher Allee 19A, 53115 Bonn, Germany
klamt@ais.uni-bonn.de, behnke@cs.uni-bonn.de.
This work was supported by the European Union’s Horizon 2020
Programme under Grant Agreement 644839 (CENTAURO).

Level 1

Level 2 Level 3

Fig. 1. Momaro on a staircase, visualized in three representation levels.
Maps show terrain heights (olive = unknown).

precisely through challenging terrain. Moreover, only using a
more abstract robot description is difficult, since the planning
result shall be a path which can be executed by the robot with
its given number of DoF.

Coarse-to-fine planning approaches [3], [4] address this
problem by generating a rough plan first and refine the
resulting path to the desired resolution and number of DoF
in a second step. Especially in challenging, cluttered terrain,
this procedure bears the risk of only finding expensive paths
due to the lack of detail in the initial search.

We present a method which plans hybrid driving-stepping
locomotion on three different levels of representation
(see Fig. 1). In the vicinity of the robot, a representation with
a high resolution and a high number of DoF is used to find
paths which can be executed by the robot. With increasing
distance from the robot, the resolution gets coarser and the
robot is described with less DoF. These path segments are
situated further in the future which comes along with a higher
degree of uncertainty and less accurate sensor information.
We compensate this loss of information for higher levels of
representation by enriching the representation with additional
semantics. All levels of representation are unified in a single
planner. We further present methods to refine path segments
into more detailed levels of representation. This decreases
the number of necessary replanning steps. Replanning is only
initiated if costs indicate that a situation is wrongly assessed
in the coarser representation. In addition, we introduce a
heuristic, based on the most abstract level of representation.

Experiments show that, compared to our previous work,
this approach can handle much larger scenarios in feasible
planning time while the path quality stays comparable.

II. RELATED WORK

Multiple works addressed path planning for challenging
environments, either by driving [5]–[7] or walking with
quadruped robots [8], [9]. To our knowledge, there exist
no approaches for hybrid driving-stepping path planning in
challenging terrain, except our previous work [1].

A common idea to accelerate planning for larger scenarios
is the usage of multiresolutional approaches. Behnke [10]
proposed a general concept for A*-based multiresolution
planning with a decreasing resolution with increasing dis-
tance from the robot. González-Sieira et al. [11] apply
high resolution in areas of high environment complexity.
Resolution decreases with increasing distance from these
areas. Similarly, Pivtoraiko et al. [12] apply different sets
of state transitions to different areas of the environment.
Bohlin [3] generates an initial plan in a coarse resolution
first and refines this plan into a finer resolution. Since high
resolution planning is only applied to parts of the map, the
search space decreases and planning performance increases,
compared to pure high resolution planning. One of the main
challenges in multiresolutional approaches is the definition
of feasible transitions between the different resolutions. All
of the presented approaches face the problem that a coarse
resolution representation neglects information and thus is
not capable of representing challenging terrain features in
sufficient detail—which might lead to wrong or bad plans.

Planning for systems with high-dimensional motion flexi-
bility quickly reaches its limits for larger environments since
the search space grows exponentially. Similar to multiresolu-
tion planning, several approaches utilize multiple represen-
tations with different planning dimensionalities to decrease
planning complexity. Kohrt et al. [4] generate an initial plan
in a low-dimensional search space and replan in the high-
dimensional search space by only considering those states
that are part of the low-dimensional plan. Gochev et al. [13]
plan a path in a low-dimensional search space and only
switch to high-dimensional planning in those areas where
low-dimensional planning cannot find a solution. Similarly,
Zhang et al. [14] plan in 2D and switch to high-dimensional
planning in the robot vicinity and at key points. As described
for multiresolution planning, planning with multiple robot
configuration dimensionalities might lead to wrong or bad
plans, since a low-dimensional robot representation might
assess challenging situations wrongly.

To achieve further planning acceleration, it is an obvi-
ous idea to combine multiresolution and multidimensional
planning. However, only few works, such as by Petereit et
al. [15] address this. Different planning dimensionalities and
resolutions are applied by using different sets of motion
primitives. A fine resolution is only considered close to the
start and goal pose and close to obstacles. A high planning
dimensionality is considered for states which will be reached
within a given time interval. This allows the planner to
provide detailed plans close to the robot while planning times
stay feasible. The drawbacks of both, multiresolutional and
multidimensional planning also apply to this work.

Fig. 2. Our wheeled-legged robot Momaro is capable of omnidirectional
driving (left) and stepping (right).

The platforms which are used in the presented works are
quite limited in their configuration capabilities, compared
to our robot Momaro. Our approach applies multiresolution
and multidimensional planning to the challenging problem of
hybrid driving-stepping locomotion. Furthermore, we com-
pensate the loss of information for coarser resolutions and
low-dimensional robot representations by enriching those
representations with additional semantic features.

III. HARDWARE

We use our mobile manipulation robot Momaro [2] (see
Fig. 2). It offers omnidirectional driving through its four
articulated legs ending in directly driven 360° steerable pairs
of wheels. The unique design enables manoeuvres which are
neither realizable by pure driving nor pure walking robots
such as shifting a single foot while maintaining ground
contact and thus changing the robot footprint under load.
Active leg movements are restricted to the sagittal plane since
each leg consists of three pitch joints.

Sensor inputs come from an IMU and a continuously
rotating Velodyne Puck 3D laser scanner at the robot head
which provides a spherical field-of-view. The laser-range
measurements are registered and aggregated to a 3D envi-
ronment map using the method of Droeschel et al. [16].

IV. APPROACH

Input to our method is a height map with a resolution
of 2.5 cm which is generated from the 3D environment
map. In the vicinity of the robot, height information is very
precise. With increasing distance from the robot, the accuracy
decreases due to measurement errors. Planning is done on
foot and body costs. The ground contact costs CGC describe
the costs to place an individual ground contact element (e.g.,
a foot or a foot pair) in a given configuration on the map. CGC
includes information about the terrain surface and obstacles
in the vicinity. The body costs CB(~rb) describe the costs to
place the robot base ~rb = (rx, ry, rθ) with its center position
rx, ry and its orientation rθ on the map. CB(~rb) include
information about obstacles under the robot base and about
the terrain slope under the robot. The generation of CGC and
CB from the height map varies between the different levels of
representation and may contain several steps. Ground contact
costs and body costs are combined to pose costs C(~r) which
describe the costs to place the robot in a given configuration
~r on the map.

Level

1

2

3

Map Resolution

• 2.5 cm
• 64 orient.

• 5.0 cm
• 32 orient.

• 10 cm
• 16 orient.

Map Features

• Height

• Height
• Height Difference

• Height
• Height Difference
• Terrain Class

Robot Representation Action Semantics

• Individual
Foot Actions

• Foot Pair
Actions

• Whole Robot
Actions

Fig. 3. The planner includes three levels of representation with decreasing resolution and robot configuration dimensionality. To compensate the loss of
information, the semantics for both the environment representation and the robot actions increase.

1

2
3

Map

Robot State

Fig. 4. Size and position of the different levels of representation. Level 1
covers the vicinity of the robot. Level 2 is also robot centered and medium
sized. Level 3 covers the whole map.

Path planning is realized through an A*-search with
anytime characteristics (ARA* [17]) on pose costs. For the
current search pose, feasible neighbour poses are generated
during the search. They can either be reached by omnidi-
rectional driving or by stepping-related motions. Stepping-
related motions are only considered in the vicinity of ob-
stacles where driving is infeasible. Steps are described as
abstract steps, the direct transition between a pre-step to an
after-step pose. The detailed motion sequence for steps is not
considered during planning but generated before execution.

The environment and the robot are described in three
different levels of representation with different sizes. In the
vicinity of the robot, we use a fine resolution and a high
robot configuration dimensionality for planning. We call this
Level 1 representation. With increasing distance from the
current robot position, the environment and the robot are
represented on higher levels with a coarser resolution and
a robot representation with lower dimensionality. This is
reasonable, since those parts of the plan are reached in the
further future and thus are more uncertain. Moreover, sensor
measurements become less precise with increasing distance
from the robot. At the same time, we compensate this loss
of detail by enriching the environment representation with
additional features, which increase the understanding of the
situation. Pose costs and robot actions use these semantic
features. Higher levels of representation can be derived from
lower levels of representation. The approach is visualized
in Fig. 3. Level sizes and positions are shown in Fig. 4. For
a planning task, the planner only performs a single planning
run while including all three levels of representation. Hence,
it is important that the same action carries the same costs in
different levels of representation to make planning consistent

over all levels. Moreover, the transition between the different
levels of representation is challenging. All three levels of
representation and the transition between them are described
in detail in the following sections.

The resulting path consists of segments in multiple levels
of representation. As described before, the contained steps
are abstract manoeuvres. Abstract steps in the initial path
segment are expanded to detailed motion sequences before
executing them. Roll and pitch motions of the robot base
as well as single foot shifts stabilize the robot to perform
each step safely. In addition, foot heights are derived. See
our previous work [1] for more details.

Steps are only expanded for path segments in Level 1
which is based on our previous work. For higher levels, rep-
resentations are not detailed enough to derive concrete robot
motions. As the robot executes the initial path segment, more
measurements are made and a more detailed environment
representation becomes available for path segments which
have been represented in higher levels before. The path is
updated with these updated representations. This can either
be done by replanning the whole path or by transforming the
respective path segments into more detailed representations,
as described in Section IV-F. We call this coarse-to-fine
transformation refinement.

A. Representation Level 1

Level 1 is based on the approach which we presented in our
previous work [1]. Input is a height map with a resolution of
2.5 cm. We derive local unsigned height differences between
neighbour cells from this height map to generate ground
contact costs for each individual foot. Base costs are derived
from the height map itself. A height map and the derived foot
costs can be seen in Fig. 5. In this level of representation,
a robot pose ~r = (~rb, f1, ..., f4) is represented through the
robot base configuration ~rb and the individual longitudinal
foot positions f1, ..., f4. At each position, the robot can have
64 different discrete orientations.

Feasible driving neighbour poses can be found within a
20-position-neighbourhood and by turning on the spot to the
next discrete orientation, as shown in Fig. 6. If the robot is
close to an obstacle, additional stepping-related manoeuvres
are considered which are visualized in Fig. 7. Those can
be a discrete step, a longitudinal base shift manoeuvre,

Fig. 5. a) Level 1 height map showing a corridor with a flight of stairs,
an untraversable steep ramp and an obstacle, b) respective foot cost map
(yellow = untraversable by driving, olive = unknown).

a) b)

Fig. 6. Driving neighbour poses can be found by either a) straight moves
with fixed orientation within a 20-position-neighbourhood or b) by turning
on the spot to the next discrete orientation.

shifting individual feet forward or shifting individual feet
towards their neutral position. We define the neutral robot
pose as the pose visualized in Fig. 7 a, top. The costs for the
presented manoeuvres are based on the foot and body costs,
the individual robot elements induce during the manoeuvre.

As an extension of the previous work, we want the
robot to align its orientation with the stair orientation, when
climbing those. This is desirable, since the kinematic only
allows for leg movements in the sagittal plane and since this
behavior can also be observed when humans climb stairs by
themselves or teleoperate robots to do so. If, after a stepping
manoeuvre, the two front/rear feet have the same longitudinal
position but stand on different heights, this indicates that the
robot is not aligned with the stairs it climbs. By punishing
such a configuration with an additional cost term, we achieve
the desired behavior.

B. Representation Level 2

We use the input height map with a resolution of 2.5 cm
to compute the Level 2 representation consisting of a height
map and a height difference map with a resolution of 5 cm
(see Fig. 9 a,b). According to the Nyquist-Shannon sampling
theorem, subsampling has to come along with smoothing. To
satisfy this theorem, we subsample the Level 1 height map as
shown in Fig. 8. Each Level 2 height value is computed from

a) b) c) d)

Fig. 7. Level 1 stepping-related manoeuvres: a) Abstract step, b) longitu-
dinal base shift, c) shifting a front foot forward, and d) shifting any foot
back to its neutral position.

1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1

1
64

x

a) b)

Fig. 8. Subsampling method: a) For a Level 2 cell (red square) a 4×4-
window (blue square) of Level 1 cells is considered. b) Normalized binomial
distribution to weigh heights and height differences.

a) b) c)

Fig. 9. Level 2: a) height map, b) height difference map, c) foot area pair
cost map for the orientation indicated by the red arrow.

the normalized, weighted sum of a 4×4-region of Level 1
height values. We use a binomial distribution for weighing.
A Level 2 height difference map is generated in the same
manner: We generate a Level 1 height difference map by
computing local height differences on the Level 1 height map.
This height difference map is then subsampled to a Level 2
height difference map.

To decrease the robot configuration space dimensionality,
we accumulate individual feet to pairs. This is intuitive, since
we observe a tendency to pairwise foot movement in Level 1
paths. Moreover, instead of describing each foot position pre-
cisely, we use foot areas as a more abstract description. We
know, that a foot will be placed somewhere in the respective
area but since the representation contains some time-related
and measurement-related imprecision, a knowledge of the
accurate foot position is not necessary. A Level 2 robot pose
~r = (~rb, ff, fr) is consequently represented by its robot base
pose ~rb and its relative longitudinal front and rear foot area
pair coordinates ff and fr. Note that our platform and planner
only allow sagittal leg movement. Lateral foot coordinates
are fixed and thus a single variable is sufficient to describe
each foot area pair.

We use the generated Level 2 representation to compute
ground contact and body costs. Body cost computation is
similar to Level 1 and only relies on height information.
Ground contact costs

CGC,2 = 1 + k1 · 4Havg, (1)

where k1 = 107, are costs to place foot area pairs on the
map and are generated from the average height differences
4Havg in the respective area. A Level 2 foot area pair cost
map can be seen in Fig. 9 c. Again, a punishing cost term is
introduced for after-step poses with different average heights
under neighbouring foot areas.

The robot actions are defined accordingly. Driving neigh-
bours can be found similar to Level 1 but with a doubled
action resolution of 5 cm and 32 discrete robot orientations at
each position. Additional stepping-related manoeuvres differ

a) b) c) d)

Fig. 10. Level 2 stepping-related manoeuvres: a) Step, b) longitudinal base
shift, c) move the front foot pair forward, and d) move any foot pair towards
its neutral position.

from Level 1 since the robot is only able to move foot
pairs instead of individual feet. If the robot is close to an
obstacle, it may step with a foot pair or perform another
stepping related manoeuvre, as visualized in Fig. 10. To
motivate stepping manoeuvres, we define a maximum height
difference 4Hmax,drive for the foot area center coordinate
which can be overcome by driving. Larger height differences
only can be traversed by stepping.

The costs for such a foot pair manoeuvre are the concate-
nated costs for each individual foot action as described for
Level 1. If, for example, the robot steps with its front foot pair
as visualized in Fig. 10 a, the costs for this manoeuvre are the
sum of the costs for a step with the front left foot and a step
with the front right foot. Since Level 2 foot pair area costs
differ from Level 1 foot costs, we reparametrized the ma-
noeuvre cost computation. We do this by performing foot pair
manoeuvres in a variety of basic scenarios (e.g., drive/turn
on a patch of flat/rough underground, step up different height
differences, do a base shift) in both representation levels and
manually tune the Level 2 cost parameters until the costs for
those manoeuvres in both levels vary by ≤ 5%.

During planning and execution, it is an important feature
to refine Level 2 path segments into Level 1. To refine a
Level 2 path segment between two successive poses ~r2,i and
~r2,i+1, we transform both poses into Level 1 and generate a set
S of feasible robot base poses by interpolating between ~r1,i
and ~r1,i+1. S is then inflated with a radius of two position
steps and one orientation step as visualized in Fig. 11. A
local planner, which is restricted to S, searches for a Level 1
path between ~r1,i and ~r1,i+1. If

• either one of the two poses becomes infeasible when
transformed to Level 1 because Level 2 assessed the
given situation wrongly or

• the costs for the refined Level 1 path differs by > 25%
from the original costs for the path segment,

we call this path segment not refineable.

C. Representation Level 3

We apply the described subsampling process (see Sec-
tion IV-B) to generate a Level 3 height map and height
difference map with a resolution of 10 cm from the Level 2
height map and height difference map. To increase the
semantics of the environment representation, we categorize
each Level 2 map cell into one of the following terrain
classes:

a) b)

Fig. 11. Generating a set of feasible robot base poses for path refinement:
a) For a given start (~r1,i, red arrow) and goal (~r1,i+1, green arrow) robot
base pose, we generate a set of feasible robot base poses (black lines) by
interpolating between the two. b) Inflation by two position steps and one
orientation step.

• flat: easily traversable by driving,
• rough: traversable by driving with high effort,
• step: includes height differences which are too large to

be traversed by driving but can be traversed by stepping,
• wall: occurring height differences are too large to be

traversed by stepping, and
• unknown: cell cannot be classified.

First, we search for cells of the terrain type step. This is done
by searching for cell pairs ci and cj that fulfill the following
criteria:

• 4H(ci) < 4Hmax,drive: ci is on a drivable surface,
• 4H(cj) < 4Hmax,drive: cj is on a drivable surface,
• ‖ci − cj‖ < 0.45m: The distance between ci and cj is

within a maximum step length, and
• for the set T of cells ck on the straight line between ci

and cj , CGC(ck) = ∞ counts for all cells ck ∈ T : A
direct foot movement from ci to cj requires a step.

For all pairs of ci and cj which fulfill these criteria, each
cell cs ∈ ci ∪ cj ∪ T is assigned the terrain class step. In
addition, we compute the angle αi,j between ci and cj and
save it for cs. Since most step cells are detected several times,
we collect several angles for each cell. αavg,s, the mean of
circular quantities of these angles describes the estimated
step orientation in cs.

Second, we classify the remaining cells by their Level 2
height difference value 4H1:

• flat if 4H(ci) ∈ [0m, 2 ∗ 10−4 m],
• rough if 4H(ci) ∈ [2 ∗ 10−4 m, 0.05m],
• wall if 4H(ci) ∈ [0.05m,∞], and
• unknown if 4H(ci) is unknown.

The height difference intervals are tuned manually with
respect to a maximum terrain height difference of 4 cm which
can be overcome by driving and a maximum terrain height
difference of 30 cm which can be overcome by stepping.
The terrain class of a Level 3 map cell is generated from the
respective four Level 2 cells by either choosing the terrain
class with most members or, if this cannot be identified, the
least difficult occurring terrain class.

Another source for terrain class segmentation can be
camera images as shown in [18]. Fig. 12 a,b gives an example
for a Level 3 height map and terrain class map.

The Level 3 robot representation ~r = ~rb only consists
of the robot base pose. Individual feet positions are not

1These height difference values are subsampled and smoothed and thus
cannot be directly transferred to occurring height differences in the terrain.

a) b) c)

Fig. 12. Level 3: a) height map, b) terrain class map (white = flat,
blue = stepping, pink = wall, black lines = step orientations), c) robot area
cost map for the orientation indicated by the red arrow.

considered but we assume that the feet are somewhere in
a ground contact area around the robot ar (see Fig. 3).
Hence, the robot is not able to perform foot or foot pair
movements in this representation. The whole robot is rather
moved over the terrain and traverses different terrain classes
with different costs. Path search neighbour poses can be
found similar to the driving neighbours described for Level 1.
In this level of representation, the action resolution is 10 cm
and the robot may have 16 different orientations at each
position. When moving over step cells, a robot state is only
feasible if the difference between the robot orientation and
the step orientation of each step cell cr is less than one
discrete orientation step: abs(αavg,r−rθ) < 1

16 ·2π. Moreover,
the robot is only allowed to move parallel and orthogonal to
step orientations. These restrictions are required to enforce a
behavior, which is induced by the robot kinematic in lower
representation levels but not represented in Level 3 otherwise.

Regarding cost generation, each cell ci is assigned a cost
value Cc(ci) depending on its terrain class:

• flat: Cc(ci) = 1.0,
• rough: Cc(ci) = 1.4,
• step: Cc(ci) = 76.0 + 2.95 · 4H(ci),
• wall: Cc(ci) = ∞, and
• unknown: Cc(ci) = nan.

The pose cost C(~r) does not combine individual ground
contact and body cost but averages the cost values of all
cells in ar. The described terrain class specific cell costs are
manually tuned by comparing the cost of Level 1 and Level 3
manoeuvres for the same set of basic scenarios, as mentioned
in Section IV-B. While constant values were sufficient for flat
and rough cells, costs for stepping manoeuvres depend on the
height difference to overcome. The presented computation
method for step cells is required to keep cost differences for
these basic manoeuvres ≤ 5%. A resulting robot area cost
map can be seen in Fig. 12 c.

Level 3 paths can be refined to Level 2 paths in the
following way: As described for Level 2, we generate a set
S of feasible robot base poses. In contrast to Level 2, we do
not only consider two successive poses but the whole path
segment ~r3,s, ..., ~r3,g that needs to be refined at once. The first
and last robot pose ~r3,s and ~r3,g of this Level 3 path segment
are transformed to a Level 2 start and goal pose and a local
Level 2 planner, which is restricted to S, searches for a path
between ~r2,s and ~r2,g. If a Level 3 path needs to be refined to
Level 1, Level 2 is taken as an intermediate refinement step.

D. Level Transition

All three levels of representation are combined in a single
planner, which chooses the lowest available level for each
pose to provide the most detailed planning. Since planning
in a low level of representation is slower, we provide Level 1
data only in a small area around the robot position which is
sufficiently large to plan the next manoeuvres. Level 2 data is
provided for a medium-sized region around the current robot
position while Level 3 covers the whole map.

The planner checks for each manoeuvre (e.g., drive into
one direction, do a step, ...) if both, start and goal pose of
this manoeuvre, are part of the same level of representation.
If the goal pose is not part of the start pose level of
representation, the start pose is transformed to the next higher
level of representation and the same manoeuvre is replanned
in this level if it is still available in this level. Note that
the transformation of the start pose to the next higher level
of representation might induce costs. Due to different map
resolutions, the robot might be shifted to fit into the next
level map cell and discrete orientation. Due to increasing foot
restrictions, feet might be shifted to fit the next level robot
representation (e.g., individual feet have to align within foot
area pairs). We check each transformation for feasibility and
generate costs from the occurring manoeuvre costs.

E. Heuristic

In our previous work, a combination of the Euclidean
distance and the orientation difference was used as an
admissible A* heuristic (Euclidean heuristic). However, this
heuristic does not consider the terrain which has large influ-
ence on the path costs. We propose a Level 3-based heuristic
which includes such terrain features (Dijkstra heuristic).

After the goal pose ~ri,G is set, it is transformed to Level 3.
We then start a one-to-any 3D Dijkstra search in Level 3
starting from ~r3,G. Hence, we get for each Level 3 pose a
cost estimation to reach the goal pose. During path planning,
we can estimate the costs from any robot pose to the goal by
transforming it to Level 3 and get the respective cost value.

Note that the quality of this heuristic strongly depends on
the quality of the Level 3 cost model in comparison to costs
for the same manoeuvres in other levels of representation.
Further note that we cannot prove that this heuristic always
underestimates costs, which is necessary to prove admissi-
bility for the generation of optimal paths. However, since we
also utilize the suboptimal ARA* algorithm, we do not aim to
generate optimal paths for a given problem. In fact, we focus
on generating paths with satisfying quality in feasible time.
The performance of this heuristic is evaluated in Section V.

F. Continuous Refinement

As the robot moves along the initial path, the sensors
provide new measurements and high-detailed environment
representations are generated in the vicinity of the current
robot position. We include these updated representations
in the path by continuously refining the respective path
segments, as shown in Fig. 13. If a cost difference > 25%
between the original and the refined path segments indicates

Fig. 13. As the robot moves along the path, the Level 1 and Level 2
representations move with it. Consequently, those path segments which are
represented in a higher level and for which a more detailed representation
becomes available, can be refined to this more detailed representation.

that the higher-level planning assessed a situation wrongly,
we initiate a new planner run. With this approach, we can
guarantee that path segments in the vicinity of the robot are
always represented in Level 1 and thus, included steps can
be expanded and the result can be executed by the controller.

V. EXPERIMENTS

We evaluate the proposed approach in two experiments.
Both are done on one core of a 2.6 GHz Intel i7-6700HQ
processor using 16 GB of memory. An additional video is
available online2 which also contains a Gazebo experiment
to demonstrate the continuous refinement strategy.

A first experiment evaluates the planning performance
of the different levels of representation individually and
combined, as shown in Fig. 4. For this, we choose the
Level 1 size to be 3×3 m. This is sufficiently large to plan the
next robot manoeuvres in high detail, but still small enough
to avoid long high-dimensional planning. The Level 2 size
is chosen to be 9×9 m so that the Level 2 path segment
is about twice as long as the Level 1 path segment. We
utilized the Euclidean heuristic to compare the results to
our previous work. The height map and a resulting path are
shown in Fig. 14. Since we use an ARA* algorithm which
works with several heuristic weights W , we evaluate the
influence of these. Fig. 15 shows the planner performance.

It can be seen that planning on levels of representation >1
and with combined levels is faster by at least one order of
magnitude compared to pure Level 1 planning. The Level 1
path for W = 1.0 could not be computed due to memory
limitations. We distinguish between the path costs in the
respective levels of representation (estimated cost) and the
costs each path carries when refined to Level 1. Comparing
the estimated costs to the refined Level 1 costs gives an
assessment about the quality of cost generation in each level
of representation. The comparison of the refined Level 1
costs to the original Level 1 costs indicates the quality of
the resulting path. It can be seen that the estimated costs
always underestimate the refined Level 1 costs. Especially for
W ≤ 1.5 the estimation is close with a difference ≤ 7.7%.
Furthermore, the results show that for W ≤ 1.5 the refined
Level 1 costs differ to the original Level 1 costs by ≤ 15%.

In a second experiment, we compare the presented Dijkstra
heuristic to the Euclidean heuristic. The scenario shown
in Fig. 16 is larger and more challenging, compared to

2https://www.ais.uni-bonn.de/videos/ICRA_2018_
Klamt/

Lvl. 1 Lvl. 2 Lvl. 3

a a

a

b

c

Fig. 14. Height map of the first experiment scenario. From its start position
(red arrow), the robot needs to navigate between multiple objects (a), over
a bar obstacle (b), step up to an elevated platform and through a door (c)
to the goal pose (green arrow). The resulting path for W = 1.125 and
combined levels of representation is shown. Level 1 path segments = red,
Level 2 segments = blue, Level 3 segments = green. Arrows show rθ .

0.01

0.1

1

10

100

1000

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

Heuristic weights

Heuristic weights

P
la

nn
in

g
tim

e
[s

]
P

at
h

co
st

s
[-

]

Lvl. 1 Lvl. 2 Lvl. 3 combined

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

0

5

10

15

20

Fig. 15. Planning performance for different levels and differentW for the
first experiment. estimated costs = yellow, refined Level 1 costs = blue.

the first scenario. The starting pose is pose a. Planning is
performed on combined levels of representation. A resulting
path is shown in Fig. 17. Planning times and resulting costs
are shown in Fig. 18. Preprocessing the Dijkstra heuristic
took 0.52 s of the presented planning times. It can be seen
that the Dijkstra heuristic further accelerates planning while
the resulting costs stay comparable at least for W ≤ 1.5.
E.g., for W = 1.25, planning is accelerated by more than
two orders of magnitude while the refined path costs only
differ by 3.3%. Moreover, the resulting path illustrates how
the robot aligns with the stairs and only moves parallel and
orthogonal to them.

We finally compare the planner performance when started
from different poses, as shown in Fig. 16. The results
in Fig. 19 indicate that an important factor for the planner
performance is the complexity of the planning within Level 1
but higher W lead to feasible performances in any case.

VI. CONCLUSION

In this paper, we presented a hybrid locomotion planning
approach which is able to provide plans for large scenarios
with high detailing in the vicinity of the robot. We achieve
this by introducing three levels of representation with de-

Fig. 16. Height map for the second experiment containing a bar obstacle
(I), a rough area (II), a door (III), a flight of stairs (VI) and two obstacles
(V). a - d are different starting poses for the planner, e is the goal pose.

Lvl. 1

Lvl. 2

Lvl. 3

Fig. 17. Resulting path for planning with the Dijkstra heuristic and
combined levels with W = 1.25.

0.1

1

10

100

1000

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

Eucl.
heuristic

Dijk.
heuristic

Eucl.
heuristic

Dijk.
heuristic

Heuristic weights

P
la

nn
in

g
tim

e
[s

]

P
at

h
co

st
s

[-
]

0

10

20

30

Fig. 18. Planning performance for combined levels of representation
to compare the Euclidean heuristic with the Dijkstra heuristic. Red lines
indicate the cost estimation for the path by each heuristic.

0.1

1

10

100

1000

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0

1.
0

1.
25 1.
5

2.
0

3.
0P

la
nn

in
g

tim
e

[s
]

Heuristic weights

a b c d

Fig. 19. Planning time for different starting poses (see Fig. 16) and different
W , using the Dijkstra heuristic.

creasing resolution and robot configuration dimensionality
but increasing semantics of the situation. The most abstract
level of representation can be used as a heuristic which poses
a second acceleration strategy. Experiments show that the
presented approach significantly accelerates planning while
the result quality stays feasible and, hence, significantly
larger scenarios can be handled in comparison to our pre-
vious work.

REFERENCES
[1] T. Klamt and S. Behnke, “Anytime hybrid driving-stepping locomo-

tion planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[2] M. Schwarz, T. Rodehutskors, M. Schreiber, and S. Behnke, “Hybrid
driving-stepping locomotion with the wheeled-legged robot Mo-
maro,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2016.

[3] R. Bohlin, “Path planning in practice; lazy evaluation on a multi-
resolution grid,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2001.

[4] C Kohrt, A. G. Pipe, J. Kiely, R Stamp, and G Schiedermeier, “A
cell based voronoi roadmap for motion planning of articulated robots
using movement primitives,” in IEEE International Conference on
Robotics and Biomimetics (ROBIO), 2012.

[5] Z. Ziaei, R. Oftadeh, and J. Mattila, “Global path planning with
obstacle avoidance for omnidirectional mobile robot using overhead
camera,” in IEEE International Conference on Mechatronics and
Automation (ICMA), 2014.

[6] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory
generation for wheeled mobile robots,” The International Journal
of Robotics Research, vol. 26, no. 2, pp. 141–166, 2007.

[7] M. Brunner, B. Brüggemann, and D. Schulz, “Motion planning for
actively reconfigurable mobile robots in search and rescue scenarios,”
in IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2012.

[8] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart,
and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016.

[9] N. Perrin, C. Ott, J. Englsberger, O. Stasse, F. Lamiraux, and
D. G. Caldwell, “Continuous legged locomotion planning,” IEEE
Transactions on Robotics, vol. 33, no. 1, pp. 234–239, 2016.

[10] S. Behnke, “Local multiresolution path planning,” in RoboCup 2003:
Robot Soccer World Cup VII, Springer, 2003, pp. 332–343.

[11] A. González-Sieira, M. Mucientes, and A. Bugarı́n, “An adaptive
multi-resolution state lattice approach for motion planning with
uncertainty,” in Robot 2015: Second Iberian Robotics Conference,
Springer, 2016, pp. 257–268.

[12] M. Pivtoraiko and A. Kelly, “Differentially constrained motion
replanning using state lattices with graduated fidelity,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2008.

[13] K. Gochev, B. Cohen, J. Butzke, A. Safonova, and M. Likhachev,
“Path planning with adaptive dimensionality,” in Fourth Annual
Symposium on Combinatorial Search, 2011.

[14] H. Zhang, J. Butzke, and M. Likhachev, “Combining global and
local planning with guarantees on completeness,” in IEEE/RSJ In-
ternational Conference on Robotics and Automation (ICRA), 2012.

[15] J. Petereit, T. Emter, and C. W. Frey, “Mobile robot motion plan-
ning in multi-resolution lattices with hybrid dimensionality,” IFAC
Proceedings Volumes, vol. 46, no. 10, pp. 158–163, 2013.

[16] D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping
and localization for autonomous navigation in rough terrain using
a 3D laser scanner,” Robotics and Autonomous Systems, vol. 88,
pp. 104–115, 2017.

[17] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A*
with provable bounds on sub-optimality,” in Conference on Neural
Information Processing Systems (NIPS), 2003.

[18] F. Schilling, X. Chen, J. Folkesson, and P. Jensfeld, “Geometric
and visual terrain classification for autonomous mobile navigation,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017.

Learning Abstract Representations for Locomotion Planning in
High-dimensional Configuration Spaces

Tobias Klamt and Sven Behnke

Abstract— Ground robots which can navigate in a variety of
terrains are needed in many domains. Key is the capability to
adapt to the ground structure, which can be realized through
additional degrees of freedom. However, planning respective
locomotion is challenging since suitable representations result
in large configuration spaces. Employing an abstract, low-
dimensional representation can support the planning.

We propose a method to learn such an abstract repre-
sentation. While a desired robot representation and action
set can be easily defined, the tuning-intensive environment
representation and cost function are represented as a CNN.
Training of the network is done on generated artificial data,
but it generalizes well to the abstraction of real world scenes.
We further apply our method to the problem of search-based
planning of hybrid driving-stepping locomotion. The learned
abstract representation is used as a powerful informed heuristic
which accelerates planning by multiple orders of magnitude.

I. INTRODUCTION

Most planners for robot locomotion planning feature
search-based or sampling-based approaches which show
great performance in 2D and 3D planning problems, e.g.,
driving robot locomotion [1]–[3]. However, many areas of
operation, e.g., in search and rescue scenarios, have challeng-
ing properties. Suitable robots need to adapt to those environ-
ments to provide fast, safe, and energy efficient locomotion
which can be realized through, e.g., tracked flippers, legs, or
wheels at adjustable limbs. Including these capabilities in the
planning problem results in high-dimensional configuration
spaces (C-spaces) which may lead to extensive searches for
search- and sampling-based approaches.

In recent years, intensive research has been performed on
learning-based motion planning approaches [4]–[8] which
learn to map a given situation to a reasonable action with-
out performing extensive searches. However, the necessary
amount of training data and the required network complexity
strongly depend on the size of the considered maps and the
number of C-space dimensions. Thus, at the current state-of-
the-art, learning-based planners are restricted to small maps
or low-dimensional planning problems.

A well investigated idea to accelerate planning in large C-
spaces is abstraction. An abstract representation has a coarser
resolution or fewer C-space dimensions and compensates this
information loss through additional features to increase se-
mantics. Given such an abstract representation, the necessity

All authors are with Rheinische Friedrich-Wilhelms-Universität
Bonn, Computer Science Institute VI, Autonomous Intelligent
Systems, Bonn, Germany klamt@ais.uni-bonn.de,
behnke@cs.uni-bonn.de. This work was supported by the
European Union’s Horizon 2020 Programme under Grant Agreement
644839 (CENTAURO).

Planning problem Detailed representation CNN

Abstract representation

Planner

(e.g., A*, RRT, PRM)

Path

Fig. 1. A CNN is used to represent an abstract representation of a detailed
planning problem which is employed to support the planner.

of the detailed representation during planning may be re-
duced to certain situations. A valuable property of an abstract
representation to be used along with a detailed representation
(e.g., as a heuristic or for coarse-to-fine planning) is that the
same actions induce the same costs in both representations
(cost similarity).

In [9], we propose a high-dimensional search-based plan-
ner for hybrid driving-stepping locomotion which we ex-
tend in [10] to multiple levels of abstraction. This shows
promising results since planning is significantly accelerates
while the resulting path quality stays comparable. How-
ever, abstract representations were manually designed and
parametrized to obtain cost similarity which is a challenging
and exhausting task.

In this paper, we propose a method to represent abstract
representations as convolutional neural networks (CNNs)
which map a spatially small planning task to a corresponding
cost assessment for the shortest path. Since these small plan-
ning tasks represent a coarse, low-dimensional set of actions,
the CNN represents a cost similar abstract representation for
the high-dimensional planning problem (see Fig. 1).

We train the CNN on artificially generated data and evalu-
ate it on simulated and real-world sensor data. Furthermore,
the method is used to generate a powerful heuristic for
hybrid driving-stepping locomotion planning, but it can be
easily transferred to other domains, e.g., walking locomotion.
The results indicate that the proposed method outperforms
our manually tuned approach in terms of abstraction quality
while eliminating tuning efforts and that the proposed heuris-
tic accelerates path planning by multiple orders of magnitude
compared to popular heuristics.

II. RELATED WORK

Most robot motion planning approaches are either
sampling-based, such as Rapidly-exploring Random Trees
(RRT) [1] or Probabilistic Roadmaps (PRM) [2], search-
based, such as A* [3] or a combination of those [11]. Low-
dimensional motion planning in 2D or 3D C-spaces, can be
seen as solved with these approaches. However, it is still
challenging to solve high-dimensional, large planning prob-
lems since the required computational power and memory
significantly increases with an increasing C-space size.

A solution to handle large environment sizes is multireso-
lution planning [12]. To handle high-dimensional C-spaces,
a local adaptation of the robot representation is an option. In
previous work, we proposed a search-based approach to plan
hybrid driving-stepping locomotion [9]. Similarly, Dornbush
et al. [13] plan multi-modal paths for a humanoid with a
search-based planner. Both approaches handle the occuring
high-dimensional C-spaces by separating the planning prob-
lem with respect to the locomotion mode and apply high-
dimensional planning only if required. Nevertheless, both
works suffer the problem of handling large scenarios in
feasible time since the high-dimensional represented areas
are still too large.

However, those approaches only neglect information in
their coarse/low-dimensional representations which might
result in wrong assessments, especially for complex terrain.
This is addressed by abstraction: Representations are coarser
but semantically enriched to compensate the information
loss. A theoretical basis for abstraction for search-based
planning is given by Holte et al. [14]. In [10], we extended
hybrid driving-stepping locomotion planning to three levels
of abstraction. With increasing abstraction, the environment
is represented in a coarser resolution but with additional
hand-crafted features such as height differences or terrain
classes. In addition, the robot representation has a coarser
resolution and less dimensions with increasing abstraction.
The costs functions are manually tuned to obtain cost
similarity. This is done by iteratively comparing costs on
a small set of exemplary tasks and adjusting parameters.
The abstract representations accelerates planning by multiple
orders of magnitude while the path quality stays comparable.
Especially the utilization of the most abstract representation
as a heuristic lead to significant speedup. However, the design
of descriptive features and tuning of cost functions required
extensive manual parametrization and is very dependent on
the used set of exemplary tasks.

In recent years, learning-based approaches for solving
robot motion planning problems were proposed. In [4]
and [5] CNNs are trained to map camera images directly
to motor commands, e.g., for manipulation tasks or steering
of a self-driving car. However, such approaches are missing a
long-term goal-directed behavior. Tamar et al. [6] proposed a
differentiable approximation of the value iteration algorithm
which can be represented as a CNN—the Value Iteration
Networks (VINs). Their performance was evaluated on small
2D grid worlds. Similarly, Karkus et al. [7] proposed QMDP-

Net which is also capable of planning in 2D grid worlds.
Srinivas et al. [8] proposed Universal Planning Networks
(UPNs) which map images of the initial and goal scene to
actions. In contrast to the VINs evaluation, UPNs are also
evaluated for robots with more degrees of freedom (DoF) but
the considered maps are rather small. These three approaches
point out the general problem of learning-based approaches
at the current state of the art: The required amount of training
data and the required network complexity are not manageable
for large, high-dimensional planning problems.

To summarize, learning-based planning approaches can
handle local problems with limited state space sizes quickly
without performing intensive searches. In contrast, traditional
planning approaches show good goal-directed behavior but
might get stuck in intensive searches for complex high-
dimensional problems. Hence, it is an interesting idea to
combine these approaches and merge the advantages of both.
Faust et al. [15] use a reinforcement learning (RL) agent to
learn short-range, point-to-point navigation policies for 2D
and 3D action spaces which capture the robot dynamic and
task constraint without considering the large-scale topology.
Sampling-based planning is used to plan waypoints which
give the planning a long-range goal-directed behavior.

In contrast to that work, we combine CNNs and search-
based planning to handle 7-dimensional hybrid driving-
stepping locomotion planning. The CNN represents an ab-
stract representation of the high-dimensional planning prob-
lem which is used as a heuristic to accelerate planning.

III. PROBLEM STATEMENT

Given a planner which uses a detailed environment (Ed)
and robot representation (Rd), a corresponding action set
(Ad), and a cost function (Cd). Ed is a map with an arbitrary
number of features describing each cell. Rd represents all
required DoF of the robot kinematics which are necessary to
address the planning problem. Ad contains all actions which
can be executed by the robot such that rd,i + ad,j = rd,i+1, an
action ad,j ∈ Ad connects two successive robot configurations
rd,i, rd,i ∈ Rd while inducing the costs Cd(rd,i, ad,j).

A second, abstract representation, consisting of Ea, Ra, Aa,
and Ca, can be used to support the planning. Ra describes the
robot configuration in a low-dimensional C-space although
this might not suffice to describe the robot state in enough
detail for execution. The correspondence between an abstract
robot configuration ra,i ∈ Ra and a detailed robot configura-
tion rd,i ∈ Rd is given through the transformation

ra,i = Td 7→ a(rd,i) (1)

and vice versa with

rd,i = Ta 7→ d(ra,i). (2)

Aa describes actions to move an abstract robot configu-
ration ra,i ∈ Ra to a successive configuration ra,i+1 ∈ Ra.
The resolution of Aa is coarser compared to Ad, such that a
sequence of actions

Ta 7→ d(ra,i) + ad,j + ad,j+1 + ...+ ad,j+k = Ta 7→ d(ra,i+1), (3)

1@
72×72

xgoal
ygoal
θgoal

3@
72×72

5@
72×72 28@

59×59
31@

28×28 34@
13×13

36@
11×11

38@
9×9

40@
7×7

Conv. 1
3×3

Padding=1

Conv. 2
7×7

Padding=3

Conv. 3
14×14

Conv. 4
4×4

+
max

pooling

Conv. 5
3×3

+
max

pooling

Conv. 6
3×3

Conv. 7
3×3

Conv. 8
3×3

1960 + 3

500

150

50

20

costs

feasibility

Fig. 2. Architecture of the proposed CNN. Input are a height map patch and the goal pose. Although it is not fed into the network, the start pose is
depicted as a red arrow for better understanding. Output are the feasibility and costs values. Convolutional layers are visualized as red cuboids, blue lines
show fully connected layers. If not stated different, convolutions have a padding of 0 and a stride of 1.

is necessary in the detailed representation to perform the least
cost transition between two successive robot configurations
in the abstract representation, while the difference between
the abstract action costs Ca(ra,i, aa,j) and the detailed costs
Cd(Ta 7→ d(ra,i), ad,j, ..., ad,j+k) should be minimized to obtain
cost similarity.

While Ra and Aa can be easily defined, Ea and Ca need
extensive tuning. We propose to represent Ea and Ca in a
CNN to avoid these tuning efforts and improve abstraction
quality.

IV. NETWORK DESIGN

We propose a regular CNN architecture—consisting of
convolutional layers and successive fully connected layers—
to learn the abstract representation (see Fig. 2). Input are
a height map patch with 72× 72 pixels and the three-
dimensional abstract goal pose ra,g. The start pose ra,s is
assumed to be always in the map center with a fixed
orientation, but is not fed into the network. For a given
resolution of 2.5 cm, the map size is chosen such that for
every abstract goal pose ra,g = ra,s + aa,j ∈ Aa, the
corresponding detailed goal pose rd,g = Ta 7→ d(ra,g) with
any feasible leg configuration is completely inside this map
patch. ra,g is defined in resolution steps relative to ra,s.

Instead of only outputting costs which become infinite for
infeasible queries, we output two values: The feasibility value
describes whether there exists a solution for the query, and,
if so, the costs value describes the corresponding costs.

We discovered that key to a good abstraction performance
are some convolutions with large kernels. A first small
convolution extracts descriptive map features from the input
height map. Consequently, a second convolution possesses
a kernel size which is similar to the size of a robot foot
and thus can determine if foot placement is possible at a
given position. The kernel size of the third convolution is
chosen such that is covers the maximum action length for
an individual foot. Hence, it can find connections between
feasible foot positions in a certain distance which is valuable
for, e.g., steps. The following convolutions and max pooling

a) b) c)

Fig. 3. Hybrid driving-stepping locomotion robots. a) Momaro, b)
Centauro, c) corresponding detailed robot representation (blue = robot base,
red squares = feet, arrows visualize the DoF).

operations with small kernels do further processing on the
actions and are followed by six fully connected layers.

The last fully connected layer is split: While costs are
output directly, the feasibility output is processed by a
sigmoid function since it is boolean.

V. LEARNING ABSTRACTION OF HYBRID
DRIVING-STEPPING LOCOMOTION PLANNING

We apply the method to hybrid driving-stepping loco-
motion planning for our platforms e.g., Momaro [16] and
Centauro [17] (see Fig. 3 a, b). Both are able to perform
omnidirectional driving and stepping motions. A detailed
robot representation which matches both robots is depicted
in Fig. 3 c.

A. Detailed Representation

The detailed environment representation Ed possesses a
height map which is generated from registered point clouds
(Fig. 4 a). Regarding Cd, foot costs (see Fig. 4 b) and base
costs, which describe the costs to place a single foot/the
base at a given position/in a given configuration on the map,
are computed from this height map. Foot costs and base
costs are merged to pose costs. The robot is represented in
7D configurations rd ∈ Rd = (rx, ry, rθ, f1, ..., f4) with the
robot base pose (rx, ry, rθ) and the longitudinal position of
each foot f1, ..., f4 as shown in Fig. 3 c. Positions have a
resolution of 2.5 cm while there are 64 discrete orientations.
Lateral foot positions are fixed and foot heights are computed
after a result path is found.

a) b)

Fig. 4. Detailed environment representation: a) Input height map, b) foot
cost map (yellow = untraversable by driving, olive = unknown).

a)

b) c) d) e)

Fig. 5. Robot actions in Ad: a) Omnidirectional driving with fixed
orientation, b) turning with fixed position, c) moving a foot relative to the
base while keeping ground contact, d) longitudinal base shift, e) step. Grid
and orientation resolution are enlarged to facilitate visualization.

Robot actions in Ad are (see Fig. 5):
• Omnidirectional driving within a 20-neighborhood with

fixed orientation,
• turning to the next discrete orientation,
• moving an individual foot relative to the robot base

while keeping ground contact,
• moving the base longitudinal relative to the feet, and
• performing a step with a single foot.

Steps are represented as the direct transition from a pre-
stepping to a post-stepping pose. Only those steps in the
result path are refined to detailed motion sequences which
consider robot stability and the detailed stepping motion.
Each action carries costs with respect to the occuring foot
and base costs that the individual robot elements experience.
For driving locomotion, a large angular difference between
the robot orientation and driving direction is punished with
higher costs to prefer driving forward which brings advan-
tages to the perception of the environment directly in front
of the robot and when switching to stepping motions in
the sagittal direction. An A*-based planner which uses the
above presented representation is used to plan hybrid driving-
stepping locomotion paths. More details can be found in [9].

B. Abstract Representation

Ra contains 3D robot configurations ra = (rx, ry, rθ)
which describe the robot position with a resolution of 10 cm
and the orientation in 16 discrete steps. Individual foot
configurations are neglected. Aa contains

• moving the robot within a 20-neighborhood with fixed
orientation (see Fig. 5 a) and

• turning to the next discrete orientation with fixed posi-
tion (see Fig. 5 b).

Transforming a detailed robot configuration to an abstract
robot configuration (Td 7→ a) is done by neglecting the foot
positions and matching the position and orientation to the
coarse resolution of the abstract C-space. The transformation

from an abstract to a detailed robot configuration Ta 7→ d
is more complicated: For all detailed robot base poses that
match the abstract configuration, we search the least cost foot
configuration while preferring configurations which are close
to the neutral robot pose (Fig. 5 a). The detailed robot pose
with the minimum pose costs is the transformation result.

C. Network Training

Training data is generated artificially. Hence, large
amounts of training data can be produced without consid-
erable effort. A map generator produces height maps of
the desired network input size. The following obstacles are
placed randomly in those height maps:

• Cuboid shaped obstacles of random size,
• walls of random length and height, and
• staircases of random width with a random number of

stairs (with random height and length).
We produce 2,000 maps of each of the following categories:

• one/two/three cuboid obstacles,
• one/two walls,
• one cuboid obstacle and one wall,
• one staircase,
• one staircase and one wall, and
• one staircase whose orientation is in the interval[

− π
16 ,

π
16

]
around the robot orientation. Those maps are

used to set a learning focus on stair climbing.
For each map, we define 22 abstract goal configurations ra,gi

with respect to Aa. The start configuration ra,s is always in
the map center with a fixed orientation. ra,s and ra,gi are
transformed to Rd using Ta 7→ d. For some maps a valid
detailed start configuration rd,s cannot be found due to
obstacles. Those maps are deleted. In total we get a set of
11,327 maps with 249,194 tasks. Subsequently, we search for
a shortest path from rd,s to ra,gi with our detailed A*-planner.
For each task we save the feasibility flag which describes if
a path could be found. Costs are saved for all feasible tasks.

The network is trained using the SGD optimizer with
a learning rate of 0.0001 and a momentum of 0.9. We
use a BCE loss function for the feasibility and a L1 loss
function for the costs. The costs loss is only considered
in the backpropagation if the task is feasible. Losses are
weighted with Wfeasible and Wcosts, both starting at 1. If
no improvement by means of a decreasing loss is achieved
in three successive training epochs, the corresponding loss
weight is divided by 5. This dynamic is applied to both
losses individually. For evaluation, a threshold of 0.5 is used
to make the feasibility output boolean. A validation set which
includes 100 maps of each mentioned category is generated
and used to evaluate the training performance (Fig. 6). We
train the network for 100 epochs and choose the state with
the best results on the validation set for our experiments.

D. Abstract Representation as Heuristic

We utilize the learned abstract representation as a heuristic
for planning in the detailed representation. For a given goal
pose rd,g, a one-to-any 3D Dijkstra search is started from

20 40 60 80 100
0

20

40

60

80

100

Epochs

Fe
as

ib
ili

ty
co

rr
ec

t[
%

]

0

0.2

0.4

0.6

0.8

C
os

ts
[-

]

Learned feasibility
Ø Cd

Std. dev.(Cd)
Ø Ca, learned

Ø Error(Ca, learned)

Fig. 6. CNN training performance. Cd is shown as a base line.

ra,g = Td 7→ a(rd,g) and explores the whole map in the abstract
representation. During that search, neighbor poses ra,ni for a
pose ra,m are generated through abstract actions aa,i such
that ra, ni + aa,i = ra, m while respective costs are computed
by the CNN which is fed with the respective height map
patches. Please note that start and goal of each action are
exchanged since this search is running backwards, starting
at the planner goal pose. While actions which are assessed
as infeasible are neglected, feasible actions are assigned the
corresponding costs output.

Consequently, each abstract pose in the map carries the
estimated costs of the shortest path to rd,g. When planning
in the detailed representation, the planner uses these cost
estimations as an informed heuristic.

Please note that we cannot prove that this heuristic always
underestimates costs, and thus, we cannot prove admissibility
for the generation of optimal paths. We rather focus on the
generation of paths with a satisfying quality in feasible time
and thus accept suboptimality to speedup planning.

The CNN is implemented using Python 2.7 and PyTorch
0.4.1. The planner is implemented in C++. Communication
is realized via ROS. Code for the CNN, the training data
generator and the framework to use the CNN as a heuristic
is available online1.

VI. EXPERIMENTS

We evaluate the proposed approach in two experiments
which compare the abstraction quality to the manually tuned
abstraction of our previous work and show the performance
of the proposed heuristic to plan hybrid driving-stepping
locomotion. A video which shows additional footage of the
experiments is available online2.

A. Abstraction Quality

The abstraction quality is evaluated on three data sets:
• random: We generate 200 random maps of each cate-

gory resulting in a set of 1,124 maps with 24,728 tasks.

1https://github.com/AIS-Bonn/planning_
abstraction_net

2https://www.ais.uni-bonn.de/videos/ICRA_2019_
Klamt/

a) b) c)

Fig. 7. Example tasks of the random test set (a), simulated test set (b),
and real test set (c). Red arrows show start poses (not fed into the CNN),
green arrows show goal poses.

TABLE I
ABSTRACTION QUALITY EVALUATION

random simulated real
Ø Cd 0.476 0.466 0.509
Std. dev.(Cd) 0.222 0.202 0.236
feasibility correct, CNN 95.04% 96.69% 92.62%
Ø Ca,CNN 0.453 0.469 0.446
Ø Error(Ca,CNN) 0.027 0.013 0.081
feasibility correct, man.tuned 79.27% 65.35% 69.77%
Ø Ca,man.tuned 0.435 0.402 0.429
Ø Error(Ca,man.tuned) 0.057 0.021 0.103

• simulated: Height map patches of the desired size are
cut out from height maps of simulated planning scenes.
This set includes 77 maps with 1,694 tasks.

• real: Height map patches of the desired size are cut
out from height maps that were generated from laser
scanner measurements during real world experiments.
This set includes 109 maps with 2,398 tasks.

We compared the performance to the manually tuned ab-
straction approach from our previous work. Finally, costs
for the tasks in the detailed representation Cd are stated as
a base line. We evaluate the feasibility and costs output. A
correct feasibility assessment means that the abstract repre-
sentation outputs the same feasibility value as the detailed
representation. Only if both representations assess a situation
as feasible, costs are considered and give an evaluation of the
costs similarity of the two representations. Figure 7 shows
some example tasks. The abstraction performance of the
proposed CNN is shown in Tab. I.

The results indicate that the CNN feasibility output is sig-
nificantly better compared to the manually tuned abstraction.
While the latter has problems in simulated and real world
robot environments, the CNN assesses a correct feasibility
for > 92.62% of the tasks throughout all test sets.

Regarding the costs assessment, the average costs error
of the CNN is smaller compared to the manually tuned
abstraction on all test sets. The error is particular small when
seen in relation to the large distribution of the base line costs.
While the error of the proposed CNN is < 5.67% of the
absolute costs on the random and simulated test sets, it is
15.9% on the real test set. This might be explained by noisier
sensor measurements which result in noisier height maps.

B. Application to Planning

We designed an arena in Gazebo simulation which in-
cludes typical locomotion tasks for Centauro in search and
rescue missions (Fig. 8). Environment perception is realized
through a continuously rotating Velodyne Puck 3D laser

a)

b)
I) II)

III)

IV)

V)
VI)

VII)

Fig. 8. Locomotion planning experiment. a) Gazebo arena with Centauro.
b) Height map with start pose (blue/red) and goals (arrows): I) Behind a
narrow door, II) next to stairs, III) on top of stairs, IV) behind some clutter,
V) on a platform, VI) inside a labyrinth, and VII) behind the robot. The red
path is the resulting path to VI with the proposed heuristic and W = 1.25.

TABLE II
HEURISTIC PERFORMANCE

Abstract representation Geometric
W 1.0 1.25 2.0 1.25 2.0
speedup factor 27.80 708.5 10860 12.00 27.88
costs increase +4.77% +10.5% +33.1% +6.07% +33,9%

scanner with spherical field-of-view at the robot head. Sen-
sor measurements are processed to registered point clouds
and used for localization using the method by Droeschel
et al. [18]. Height maps are generated from these point
clouds. The used system is equipped with an Intel Core
i7-8700K@3.70 GHz, 64 GB RAM and an NVidia GeForce
GTX 1080Ti with 11 GB memory.

For all abstract poses, height map patches are extracted
and neighbors with corresponding costs are precomputed by
the CNN which takes 239 s and is only required once per
map. We plan a path to all goals while using the learned
abstract representation as a heuristic. The one-to-any Dijkstra
search which starts from each goal pose and generates the
heuristic takes 0.049 s in average. We compare the planning
performance to planning with a geometric heuristic. This
combines Euclidean distances with rotational differences and
is admissible. Hence, when used with a weight W = 1, re-
sults are optimal. Both heuristics are evaluated with multiple
W ≥ 1 to also obtain accelerated, sub-optimal solutions.

Figure 9 visualizes the planner performance for both
heuristics and different W . Tab. II summarizes the result-

I II III IV V VI VII
10−2

10−1

100

101

102

103

104

P
la

nn
in

g
tim

e
[s

]

Geom. heuristic W = 1 Abstr. rep. heuristic W = 1

Geom. heuristic W = 1.25 Abstr. rep. heuristic W = 1.25

Geom. heuristic W = 2 Abstr. rep. heuristic W = 2

I II III IV V VI VII
0

5

10

15

Goal

P
at

h
co

st
s

[-
]

Fig. 9. Planning times (including heuristic generation) and path costs
for all goal poses. The heuristic which is based on the learned abstract
representation is compared to the geometric heuristic.

ing speedup and cost increase compared to the optimal
solution. The results indicate that the proposed abstraction-
based heuristic accelerates planning by multiple orders of
magnitude while, in particular for W = 1.25, path costs stay
comparable. This significantly outperforms the geometric
heuristic. Especially for challenging tasks such as the stairs
(III) and the labyrinth (VI), our heuristic was mandatory to
obtain a solution in feasible time. This can be explained by
the fact that the geometric heuristic has no information about
the environment and thus the planner may expand many
poses before considering expensive actions. In contrast, the
proposed abstraction-based heuristic uses its costs assess-
ments to support the planner in its goal-directed behavior
while knowledge about the environment is included.

VII. CONCLUSION

In this paper, we presented a CNN which learns the envi-
ronment representation and cost function of a 3-dimensional
abstract representation for a high-dimensional locomotion
planning problem. The CNN maps a local planning task,
consisting of a height map patch and goal pose, to a costs
assessment for this task. We demonstrate, how such a CNN
can generate an informed heuristic for search-based high-
dimensional planning. Experiments show that such a heuris-
tic accelerates planning by multiple orders of magnitude,
especially for challenging tasks. We further show, that the
CNN outperforms a manually tuned abstract representation
from previous work while eliminating tuning efforts.

REFERENCES
[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path

planning,” 1998.
[2] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-

bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no.
4, pp. 566–580, 1996.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107,
1968.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research (JMLR), vol. 17, no. 1, pp. 1334–1373, 2016.

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, et al., “End to end learning for self-driving cars,” ArXiv
preprint arXiv:1604.07316, 2016.

[6] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

[7] P. Karkus, D. Hsu, and W. S. Lee, “QMDP-Net: Deep learning
for planning under partial observability,” in Advances in Neural
Information Processing Systems (NIPS), 2017.

[8] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” ArXiv preprint arXiv:1804.00645, 2018.

[9] T. Klamt and S. Behnke, “Anytime hybrid driving-stepping locomo-
tion planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[10] T. Klamt and S. Behnke, “Planning hybrid driving-stepping locomo-
tion on multiple levels of abstraction,” in IEEE/RSJ International
Conference on Robotics and Automation (ICRA), 2018.

[11] J. Li, S. Liu, B. Zhang, and X. Zhao, “RRT-A* motion planning
algorithm for non-holonomic mobile robot,” in IEEE Society of
Instrument and Control Engineers Annual Conference (SICE), 2014.

[12] S. Behnke, “Local multiresolution path planning,” in RoboCup 2003:
Robot Soccer World Cup VII, Springer, 2003, pp. 332–343.

[13] A. Dornbush, K. Vijayakumar, S. Bardapurkar, F. Islam, M. Ito, and
M. Likhachev, “A single-planner approach to multi-modal humanoid
mobility,” in IEEE/RSJ International Conference on Robotics and
Automation (ICRA), 2018.

[14] R. C. Holte, M. Perez, R. Zimmer, and A. MacDonald, “Hierarchical
A*: searching abstraction hierarchies efficiently,” in Symposium on
Abstraction, Reformulation, and Approximation, 1995.

[15] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson,
and L. Tapia, “PRM-RL: long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,”
in IEEE/RSJ International Conference on Robotics and Automation
(ICRA), 2018.

[16] M. Schwarz, T. Rodehutskors, D. Droeschel, M. Beul, M. Schreiber,
N. Araslanov, I. Ivanov, C. Lenz, et al., “NimbRo Rescue: Solving
disaster-response tasks with the mobile manipulation robot Momaro,”
Journal of Field Robotics, vol. 34, no. 2, pp. 400–425, 2017.

[17] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, et al., “Supervised au-
tonomous locomotion and manipulation for disaster response with a
centaur-like robot,” Accepted for IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) 2018, http://www.
ais.uni-bonn.de/papers/IROS_2018_Klamt.pdf.

[18] D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping and
localization for autonomous navigation in rough terrain using a 3D
laser scanner,” Robotics and Autonomous Systems, vol. 88, pp. 104
–115, 2017.

Value Iteration Networks on Multiple Levels of Abstraction

Daniel Schleich, Tobias Klamt, and Sven Behnke

Abstract— Learning-based methods are promising to plan
robot motion without performing extensive searches, as done
by non-learning approaches. Value Iteration Networks (VINs)
received much interest since—in contrast to standard CNN-
based architectures—they learn goal-directed behaviors which
generalize well to unseen domains. However, VINs are restricted
to small and low-dimensional domains; which limits their
applicability to real-world planning problems.

We propose VINs on multiple levels of abstraction. While
the vicinity of the robot is represented in sufficient detail, the
representation gets spatially coarser but more descriptive with
increasing distance from the robot. This enables VINs to solve
more complex planning tasks. We show that our approach
outperforms original VINs in 2D grid worlds in terms of
planning success and memory requirement. Further, we employ
our approach to plan omnidirectional driving for a search-and-
rescue robot in cluttered terrain.

I. INTRODUCTION

While search-based and sampling-based methods are well
investigated for motion planning, they tend to extensive
searches for complex high-dimensional tasks due to the lack
of scene understanding [1]–[3].

In other domains, especially in perceptual contexts, con-
volutional neural networks (CNNs) are well investigated [4],
[5]. An increasing number of works applied CNNs to robot
motion planning in recent years. This is promising since
CNNs enable planning without extensive searches. Standard
CNN architectures have been employed to map system state
observations directly to actions [6], [7]. However, those
approaches have difficulties to understand the goal-directed
behavior of planning and to generalize to unseen domains.

This issue is addressed by, e.g., Value Iteration Networks
(VINs) [8] or Universal Planning Networks (UPNs) [9].
Instead of following a strict feed-forward approach, values
iterate multiple times in an inner loop to be propagated
through the representation. Those methods show promising
results in terms of goal directed behavior and generalization
to unseen domains. However, they have only been applied
to small, low-dimensional problems. Planning in larger con-
figuration spaces requires more complex network designs
and significantly more training data which becomes at some
point unfeasible on currently available hardware. Thus, it
is challenging to apply them to most real-world planning
problems.

All authors are with Rheinische Friedrich-Wilhelms-Universität
Bonn, Computer Science Institute VI, Autonomous Intelligent
Systems, Bonn, Germany schleich@uni-bonn.de,
klamt@ais.uni-bonn.de, behnke@cs.uni-bonn.de.
This work was supported by the European Union’s Horizon 2020
Programme under Grant Agreement 644839 (CENTAURO).

Level 3Level 2Level 1

Value Iteration
Networks

Plan

Fig. 1: The general idea of VINs on multiple levels of abstraction.

A well-established idea to handle large configuration
spaces is abstraction [10], [11]. An abstract representation
describes neighboring states in a spatially/temporally coarser
resolution while enriching the representation with additional
descriptive features.

We propose a method to combine three environment rep-
resentations with increasing abstraction with VINs to obtain
a learning-based planner which is capable of handling more
complex tasks (Fig. 1). With increasing distance from the
robot, the level of abstraction increases. While the spatial
resolution decreases with an increasing level of abstraction,
the number of cells is constant for all levels which results
in larger covered areas for more abstract maps. In addition,
an increasing level of abstraction comes along with an
increasing number of descriptive features for each cell.

Experiments show that our approach outperforms VINs
in 2D grid worlds in their original implementation and an
extension to employ multiple hierarchical representations,
namely Hierarchical VINs (HVINs). We further apply our
method to plan omnidirectional driving locomotion while
considering the individual configuration of ground contact
areas (which we refer to as the robot footprint). Results show
that planning on multiple levels of abstraction enables VIN to
solve larger planning tasks while the result quality increases
and memory requirements decrease.

II. RELATED WORK

Most planning problems can be described as a Markov
Decision Process (MDP) which consists of state and action
spaces, transition probabilities, and rewards for each state-
action pair [12]. The goal is to find a policy which results
in high long-term rewards. One common algorithm to find

such an optimal policy is Value Iteration (VI). By applying
the Bellman equation [13], it calculates for each state the
expected long-term reward. The optimal policy is obtained
by always moving to the state with the highest state value.

While CNNs are well investigated for tasks such as image
classification [4] and robot perception [5], their application
to motion planning arose in recent years. Traditional CNN
architectures have been used to learn policies and directly
derive actions from state observations. In [6] and [7], CNNs
are trained to map raw images to robot motor torques for
real-world manipulation tasks and autonomous car steering.
Although the results of these applications are impressive,
such approaches lack the capability of including long-term
goal directed behavior and generalization to unseen domains.

In 2016, Tamar et al.[8] proposed VINs. An explicit
planning module approximates the Value Iteration Algorithm
by rewriting the application of Bellman equations (which we
refer to as Bellman update) as a CNN. Since this planning
module is fully differentiable, standard backpropagation can
be used to learn the parameters of the model, like a suit-
able reward function or state transition probabilities. The
embedded planning operation enables VINs to generalize
well to unseen environments and understand the desired goal-
directed behavior. However, VINs do not scale well to larger
map sizes or higher-dimensional planning tasks, since the
number of required Bellman updates depends on the state
space size. Larger state spaces result in longer training times
and increasing memory requirements. Hence, evaluation is
limited to small 2D grid worlds though. In the supplementary
material of this work, HVINs are proposed to reduce the
number of necessary Bellman updates. Value iteration is first
performed on a down-sampled copy of the input map to
generate rough state-value estimates, which are up-sampled
and used as initialization for another value iteration module
working on the full resolution. This model can be extended
to multiple hierarchical layers. However, the information loss
through down-sampling is not compensated. Furthermore, all
layers operate on the whole environment size resulting in
only slightly decreasing memory requirements.

In addition, VINs have been applied in other domains.
Niu et al.[14], proposed generalized value iteration networks
which work on arbitrary irregular graph structures and can be
applied to real world data like street maps. Karkus et al.[15]
proposed QMDP-nets which handle partially observable en-
vironments and express value iteration through a CNN.

UPNs by Srinivas et al.[9] learn useful latent state repre-
sentations from images of the current scene and the desired
goal scene. They infer motion trajectories by performing
gradient descent planning and iterating over action sequences
in the learned internal representations. Considered environ-
ments may have more than two dimensions but are rather
small. The gradient descent planner is very time consuming
and hinders scaling to larger environments. Impressively,
UPNs are able to generalize to modified robot morphologies.

In other domains, abstraction is an established method
to handle large state spaces. Abstract states unify multi-
ple detailed states. This can be realized through coarser

resolutions or lower-dimensional representations while the
loss of information is compensated by additional features
which increase the representation’s semantics. In [11] the
search-based approach for the high-dimensional problem of
hybrid driving-stepping locomotion planning [16] is extended
to plan on multiple levels of abstraction which results in
significantly shorter planning times while the result quality
stays comparable. In [10] temporal abstraction is applied to
reinforcement learning which generates an efficient space to
explore complicated environments.

We propose a method to combine VINs with the idea
of planning on multiple levels of abstraction to obtain a
learning-based planner which is capable of solving planning
tasks on larger state spaces. The information loss in coarser
representations is compensated through additional features.
In addition, detailed representations are only generated for
parts of the environment which decreases memory require-
ments. This increases the applicability of learning-based
planning approaches to real-world problems.

III. METHOD

VINs internally represent each state as one cell of a multi-
dimensional grid and compute a reward and state-value for
each of these grid cells. To enable information flow from the
goal to the start state, Bellman updates are performed repeat-
edly within the value iteration (VI) module. The number of
required Bellman updates depends on the grid size. For large
and high-dimensional grids, this leads to large computation
graphs for the gradients during backpropagation, resulting in
long training times and high memory consumption. Since the
number of states within the VI module is limited, we change
what each state represents. In the vicinity of the robot, which
is defined to be always in the center of each map, spatial
precision is needed to plan the next robot action. Regions
which are further away from the robot can be described in
a coarser more abstract representation.

We define three levels of abstraction with a constant
number of cells but decreasing resolution. Level-1 has the
original input resolution but only covers the vicinity of the
robot. For Level-2, the resolution is halved resulting in a four
times larger covered area. This step is repeated to obtain
Level-3. Hence, Level-3 covers an area which is 16 times
larger than the Level-1 area. The spatial arrangement of the
three representations is depicted in Fig. 1.

To compensate the information loss in coarser represen-
tations, additional features are introduced for each abstract
cell and are learned during training. We define the number
of features for Level-1, Level-2, and Level-3 to be one, two,
and six, respectively.

A. Network Architecture

Input to the network (Fig. 2) is an occupancy map of
the environment and an equally sized goal map which only
contains zeros except for the goal cell (one-hot-map). In
contrast to original VINs, we do not provide the system
explicit information about the start pose, but define that input
maps are always robot centered.

1 @ 8×8
1 @ 8×8
1 @ 8×8

6 @ 8×8
2 @ 8×8

1 @ 8×8

Reward
Module

VI
Module

Goal
map

Occupancy
map

32 × 32

32 × 32

Start
orientation

Abstraction
Module

Abstract environment
maps

Abstract goal
maps

6 @ 16×8×8
2 @ 16×8×8

1 @ 16×8×8

6 @ 8×8
2 @ 8×8

1 @ 8×8

1 @ 8×8
1 @ 8×8

1 @ 8×8

1 @ 16×8×8
1 @ 16×8×8

1 @ 16×8×8

Reactive
Policy

Action
probabilities

Multilevel
reward maps

Multilevel
state value maps

Fig. 2: Network architecture. Elements which only account to 2D grid world planning are shown in green. Elements for 3D locomotion planning are purple.

Level-3 Map
6@ 8× 8

Level-2 Map
2@ 8× 8

2 @ 16×16

Occupancy Map

Level-1 Map
1@ 8× 8

1 @ 32×32

conv. conv.
6 @ 8×8

Fig. 3: Abstraction Module. Both convolutions use kernels of size 2 × 2
with a stride of 2. The goal map is processed using max pooling operations
with the same parameters instead of the convolutions.

In a first step, the Abstraction Module (Fig. 3) processes
the input environment map to three, equally sized abstract
environment maps. The Level-1 map is extracted as a patch
around the center of the occupation map. A convolution
generates the Level-2 representation with halved resolution
from the input map. While the Level-2 map is again extracted
from the map center, the whole Level-2 representation is
processed by another convolution to obtain the Level-3 map.
The goal map is processed similarly. However, we do not
use convolutions but max pooling operations here.

Subsequently, the abstraction maps and the goal map are
fed into the Reward Module (Fig. 4) to generate rewards
for each state. Since the abstract environment maps have
multiple features per cell, this needs to be considered in the
reward computation. It, e.g., might be possible that an ab-
stract map cell can be entered from one direction but not from
another which is encoded in the features. Hence, multiple
reward features are necessary for each cell to represent such
information. It is important to understand that information
encoded at the same cell of different abstraction maps refers
to different locations in the environment. We support the
network in understanding this relation with the following
method: The Level-1 reward map is obtained by stacking the
respective environment and goal maps and processing them
with two convolutions. These convolutions use a padding to
keep the map size constant. Thus, the relation between cell
position and environment location stays constant either.

To enable information flow between levels, the Level-1
reward map is also used to generate the Level-2 reward map.
A max pooling operation matches the resolution of the the
Level-1 map resolution to Level-2. The result is padded with
zeros to match the size of the Level-2 map. This procedure
ensures that information at the same cell position in both
maps describe the same environment location.

Subsequently, the stacked Level-1 and Level-2 maps are
processed as described above to obtain the Level-2 reward
map and provide the result for the Level-3 reward map
generation.

Reward maps are input to the VI Module (Fig. 5) where
they are processed to state-values. Each iteration of the
Bellman update is represented through a convolution and
subsequent max pooling operation. The kernel is chosen
such that it covers the set of possible actions and thus
can propagate state values through the map, respectively.
Unlike the reward maps, state-value maps consist of only
one channel as they describe the expected long-term reward
for a pose. At the beginning of each iteration, we apply a
padding to the input maps as shown in Fig. 6. The padded
area contains values of the neighboring cells of the next
higher abstraction level. Since the reward maps vary in their
number of features, we use the average over all features of
one cell of the higher level map as the padding value for all
respective cells in the lower level map.

Finally, for all neighbors of the start state, their state-
values are mapped to probabilities over actions through a
Reactive Policy, which simply is a fully-connected layer.

We apply the proposed architecture to two planning prob-
lems: 2D grid worlds and 3D robot locomotion. The former is
used to compare against original VINs and HVINs while the
latter demonstrates the capabilities of our approach to handle
problems of higher complexity. Necessary specifications and
modifications for each planning domain are described in the
following. The network is implemented using Python 2.7 and
PyTorch 0.4.1. Respective source code is available online1.

1) 2D Grid Worlds: The planner is given queries for a
point-like agent in 2D grid worlds. The goal map is input as
a one-hot map. As actions, the agent can move to one of the
eight adjacent neighbor cells (Fig. 7 a).

1https://github.com/AIS-Bonn/abstract_vin

Multilevel
reward map

6 @ 8×8

2 @ 8×8
1 @ 8×8

stack conv.

Kernel:
3×3

6 @ 8×8
9 @ 8×81 @ 8×8

Environment &
goal maps

conv.

Kernel:
1×1

6 @ 8×8150 @ 8×8

Max
pool

pad
(zeros)

1 @ 4×4 1 @ 8×8

2 conv.

Kernels:
3×3, 1×1

1 @ 8×8
1 @ 8×8

1 @ 8×8

stack 2 conv.
Kernels:

3×3, 1×1

2 @ 8×8
4 @ 8×81 @ 8×8

2 @ 8×8 2 @ 8×8

pad
(zeros)

2 @ 4×4

Max
pool

Fig. 4: Reward Module. Level-1 maps are shown in black, red parts belong to Level-2 and blue parts to Level-3. Wherever two convolutions are depicted
in one step, the first maps to 150 features and the second to the depicted number of channels, as shown for Level-3.

State-Value
Map

K recurrence

conv.
Kernel:

3×3
3×3×3

Max
pool

Reward Map

old State-Value
Map

pad

Fig. 5: Value Iteration Module. Elements which only account to 2D grid
world planning are shown in green. Elements for the 3D robot locomotion
planning are colored purple.

1
2
3
4
5
6

1
2

3

4

5
6

2

3
4

5

θ = 0
θ = 15
θ = 14

θ = 1
θ = 0
θ = 15

. . .

Fig. 6: Left: Padding the map of abstraction level l (bottom) to allow
information flow from the map of level l+1 (top) to level l. The numbers
indicate which values are copied where. Right: Orientation padding during
3D VIs to emphasize that the orientations θ = 15 and θ = 0 are neighbors.

a) b) c)
Fig. 7: Possible actions for planning domains. a) Moving to an adjacent
neighbor cell in 2D grid worlds, b) drive to an adjacent neighbor state with
fixed orientation in 3D robot locomotion planning, and c) turn to the next
discrete orientation with fixed orientation in 3D robot locomotion planning.

2) 3D Robot Locomotion: Given a robot that can perform
omnidirectional driving and has a certain footprint. Possible
actions for the agent are:

• Move to one of the eight adjacent neighbor states with
fixed orientation (Fig. 7 b) and

• turn to the next discrete orientation (16 equal orientation
steps) with fixed position (Fig. 7 c).

When generating training data and evaluating the network,
collision checking is done by checking if any cell which
is occupied by the robot footprint is also occupied by an
obstacle. Hence, for robots with modular footprints, it is
possible to, e.g., take obstacles between their legs.

To enable the network to handle 3D agent states, reward
and value maps are extended by one additional dimension for
the orientation (Fig. 2). We represent the robot orientation
in 16 discrete orientations of equal angular distance. Due
to the increased complexity of the agent states, we increase
the number of features for Level-2 to five and for Level-3
to ten. Furthermore, we increase the number of convolutions
within the Reward Module by two additional convolutions for
processing the Level-1 map and one additional convolution
for the Level-2 map. To consider the robot footprint, we
transform the reward map at the end of the Reward Module:
For each possible robot base pose, we sum over the four cells
corresponding to the wheel positions and assign the result to
the cell corresponding to the robot base pose.

In the VI Module, the convolution kernel needs to cover
all possible actions which results in a 3D kernel. Since the
neighborhood relation for the orientation is cyclic, we pad the
reward maps and state-value maps on the orientation channel
on each end with the values of the opposite end (Fig. 6).

Other than 2D planning, the architecture for 3D planning
needs information about the start and goal orientation. The
start orientation is fed into our system as an additional
parameter. It is only used within the Reactive Policy to select
those state-values which belong to neighbor poses of the start
pose. The goal orientation is encoded in the goal map in

which all cell entries are 0, except for the goal cell which
carries the index of the discrete orientation (1− 16).

B. Training
Training data is generated by placing obstacles of random

number, size and position into a grid world. In addition,
multiple goal states are placed randomly. The start state is
defined to be in the map center. Subsequently, we use an A∗

planner as an expert to generate optimal paths.
Overall, we generated 5,000 environments, each with

seven planning tasks, resulting in 35,000 different training
scenes. The validation and test sets both consist of 715
additionally generated environments with seven planning
tasks each, resulting in 5,005 different scenes for each set.

To increase data efficiency during training, we do not
only use the whole expert paths but sub-paths which are
generated by randomly placing the start and goal poses on
the expert path. Hence, the network is not only trained on
the full paths but on many segments of every expert path
which significantly increases the amount of training data.

When evaluating our approach against VINs and HVINs,
all networks are trained using the RMSprop optimizer as
proposed by Geoffrey Hinton in his lecture [17] which was
also used in the original VIN publication. However, when
using the RMSprop without any further learning rate sched-
uler, the network converges to sub-optimal local minima. For
the 3D task, we therefore combine RMSprop with the cyclic
learning rate scheduler proposed in [18]: The learning rate
is decreased using a cosine annealing scheme. After several
training epochs, we reset the learning rate to a higher value.
We call the time between learning rate resets a learning rate
cycle. Initially, the length of a learning rate cycle is set to
48 epochs and the learning rate is 0.001. After each cycle
the cycle length increases by 150% while the initial learning
rate decreases to 95% of the previous one.

Figure 8 shows the training performance of our approach
for both planning domains and two map sizes and compares
the 2D grid domain to original VINs and HVINs. The
network is designed to output the next action for a given
input. To obtain a path for solving a planning problem,
we iteratively let the network predict the next action and
update the input maps according to the new robot position.
A path trajectory is considered successful if it reaches the
goal without hitting any obstacles and within no more than
twice the optimal number of actions, as determined by the
expert A∗ planner. The success measures if the network was
able to plan a path to the goal.

It can be seen that our approach obtains better success rates
than VINs and HVINs for the 2D task on the validation set.
In addition, our approach converges faster and with a higher
stability. Especially on 64 × 64, original VINs show large
instabilities in their training behavior. We choose for each
network architecture the state with the best performance on
the validation set to use this in our experiments.

IV. EXPERIMENTS

All experiments are done on a system equipped with an
Intel Core i7-8700K@3.70 GHz, 64 GB RAM and an NVidia

VIN 2D HVIN 2D
Abstraction VIN 2D Abstraction VIN 3D

0 500 1,000 1,500
0

0.2

0.4

0.6

0.8

1

Epoch

Su
cc

es
s

32× 32 grid worlds

0 500 1,000 1,500
0

0.2

0.4

0.6

0.8

1

Epoch

64× 64 grid worlds

Fig. 8: Training performance of original VINs, HVINs and our approach
on the validation set.

TABLE I: Results for 2D grid worlds.

32× 32 VIN HVIN Abstract VIN
Accuracy 86.37% 87.21% 85.65%
Success 95.12% 98.78% 99.32%
Path difference 0.230 0.193 0.144
Graphics memory 771 MB 753 MB 569 MB

64× 64 VIN HVIN Abstract VIN
Accuracy 75.18% 75.82% 86.91%
Success 76.00% 78.22% 94.53%
Path difference 0.759 1.191 0.186
Graphics memory 1907 MB 1417 MB 769 MB

GeForce GTX 1080Ti with 11 GB memory.
To evaluate the network performance, we consider two

measures. The above mentioned success rate evaluates the
network performance on the desired task: path planning. In
addition, to compare against VINs, we evaluate the accuracy
which describes how often the network chooses the same
next action as the expert A∗ planner. Please note that in many
cases there is more than one optimal next action. However,
as in original VINs, the network is trained to output one
next action which is compared to the planner. Hence, there
occur cases in which the output of the network is different
to the output of the A∗ planner but the network still unrolls
an optimal path although the accuracy measures a mistake.

A. Path Planning in 2D Grid Worlds

We compare our approach against VINs and HVINs on the
2D grid world test set. Similar to our approach, we used three
hierarchical levels for HVINs, each halving the resolution of
the previous level. The lowest resolution level uses the same
number of Bellman updates (K) as proposed for original
VINs with a similar number of cells. This coarse state-value
initialization is then refined twice by two Bellman updates
on the map with medium resolution and two consecutive
Bellman updates on the map with fine resolution.

In [8], grid world sizes from 8×8 to 28×28 are considered.
We compare on a slightly larger map with 32 × 32 and a
significantly larger map with 64×64 cells. The performance
of all three networks can be seen in Tab. I.

The results indicate that, on 32 × 32 grid worlds, our
approach outperforms VINs and HVINs in terms of a better
success rate while using less graphics memory and obtaining
better path quality. For 64×64 the difference of our approach

Fig. 9: Result path comparison on a 64 × 64 grid world. VINs (red)
and HVINs (orange) react to obstacles when approaching them while our
approach (blue) shows better long-term understanding. A optimal path
obtained by our A∗ planner is depicted in black.

Fig. 10: The Centauro robot.

to VINs and HVINs even increases. Our success rate is
significantly higher while memory requirements are only
40.3% of original VINs and 54.3% of HVINs. In particular
we obtain paths which are significantly closer to the optimal
solution. This can also be seen in Fig. 9 which shows paths
for an example task on a 64×64 grid world. While VINs and
HVINs react to obstacles when they get close to them, our
approach (similar to the optimal path) seems to better include
these obstacles in its long-term goal-directed behavior.

B. Planning 3D Locomotion with Footprint Consideration

We use the Centauro robot [19] which is a centaur-like
platform with a quadruped lower body and an anthropomor-
phic upper body which is developed to solve a wide range of
mobile manipulation tasks in search and rescue environments
(Fig. 10). Each leg ends in a 360° steerable actively driven
wheel which allows omnidirectional driving. We choose a
fixed leg configuration with 0.8m longitudinal and lateral
distance between the wheels. A 3D rotating Velodyne Puck
laser scanner at the robot head with spherical field-of-view
perceives the environment. Measurements are processed to
registered point clouds while the robot is localized using the
method of Droeschel et al.[20]. Finally, occupancy maps with
a resolution of 0.2 m are generated from these point clouds.
Those are used as input to our network. Robot perception
and control is implemented in C++. Communication with
the network is realized using ROS.

Our approach is evaluated on the test set with 32×32 grid
worlds. We achieve a success rate of 70.15% while our paths
are on average 2.06% longer than the optimal solution. The
required graphics memory is 1093 MB.

We further employ our approach to plan paths for Centauro

I)

VII)

III)

VI)

IX)

IV)

V)

II)

VIII)

Fig. 11: 3D Locomotion planning experiment. Left: Gazebo arena with
Centauro. Right: The corresponding occupancy map with the nine chosen
goals and one example result path.

TABLE II: Results of our approach and the A∗-planner for the tasks
depicted in Fig. 11.

Abstract VIN A∗-planner
Path length Planning Time Path length Planning Time

I) 23.41 0.242 sec 23.41 0.153 sec
II) Not found 24.14 0.775 sec
III) 18.49 0.211 sec 17.90 0.082 sec
IV) 18.80 0.225 sec 18.80 0.274 sec
V) Not found 27.76 1.719 sec
VI) 15.90 0.187 sec 15.90 0.814 sec
VII) 15.27 0.192 sec 14.44 0.067 sec
VIII) 19.18 0.225 sec 16.25 0.053 sec
IX) 22.13 0.259 sec 22.13 0.665 sec

in a simulated environment with cluttered terrain (Fig. 11).
Experiments are performed in the Gazebo simulation en-
vironment. Obstacle heights are chosen to be rather small
to prevent the laser scanner from handling occlusions. A
video with additional footage of the experiments is available
online2. We place nine different goal poses in the map
(Fig. 11) and compare our approach to the expert A∗ planner.

The results in Tab. II indicate that our planner obtains
optimal or close to optimal paths in most cases. Even
challenging tasks which require the robot to take obstacles
between its leg (e.g., III and VIII) can be planned. The
planner seems to have problems with tasks which require
turning actions in narrow sections such as II and V. Moreover,
planning times are feasible and have a smaller distribution
than for the A∗ planner. In some cases the A∗ planner is
outperformed.

V. CONCLUSION

In this paper, we present a modification to Value Iteration
Networks (VINs) to employ multiple level of abstractions.
While the state resolution gets coarser, additional features
compensated the information. Since training times and mem-
ory requirements limit the state space size, our approach
facilitates VINs to solve for larger and more complex queries.
Results indicate that we outperform VINs in terms of result
quality and memory requirements. We further demonstrate
how our approach plans omnidirectional locomotion for a
robot in cluttered terrain while considering its footprint. In
summary, we increase the applicability of learning-based
motion planning approaches to real-world problems.

2https://www.ais.uni-bonn.de/videos/ICRA_2019_Schleich

REFERENCES
[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the

heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107,
1968.

[2] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[3] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no.
4, 566580, 1996.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classi-
fication with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems (NIPS), 2012.

[5] M. Schwarz, A. Milan, A. S. Periyasamy, and S. Behnke, “RGB-D
object detection and semantic segmentation for autonomous manip-
ulation in clutter,” The International Journal of Robotics Research
(IJRR), vol. 37, no. 4-5, pp. 437–451, 2018.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research (JMLR), vol. 17, no. 1, pp. 1334–1373, 2016.

[7] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” ArXiv preprint arXiv:1604.07316,
2016.

[8] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

[9] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” ArXiv preprint arXiv:1804.00645, 2018.

[10] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstrac-
tion and intrinsic motivation,” in Advances in Neural Information
Processing Systems (NIPS), 2016.

[11] T. Klamt and S. Behnke, “Planning hybrid driving-stepping locomo-
tion on multiple levels of abstraction,” in IEEE/RSJ International
Conference on Robotics and Automation (ICRA), 2018.

[12] R. Bellman, Dynamic programming. Courier Corporation, 2013.
[13] R. Bellman, “A markovian decision process,” Indiana Univ. Math.

J., vol. 6, pp. 679–684, 4 1957, ISSN: 0022-2518.
[14] S. Niu, S. Chen, H. Guo, C. Targonski, M. C. Smith, and J. Ko-

vacevic, “Generalized value iteration networks: Life beyond lattices,”
CoRR, vol. abs/1706.02416, 2017. arXiv: 1706.02416. [Online].
Available: http://arxiv.org/abs/1706.02416.

[15] P. Karkus, D. Hsu, and W. S. Lee, “Qmdp-net: Deep learning
for planning under partial observability,” in Advances in Neural
Information Processing Systems, 2017, pp. 4694–4704.

[16] T. Klamt and S. Behnke, “Anytime hybrid driving-stepping locomo-
tion planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[17] T. Tieleman and G. Hinton, Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude, Available at https:
//www.coursera.org/lecture/neural- networks/
rmsprop - divide - the - gradient - by - a - running -
average-of-its-recent-magnitude-YQHki, 2012.

[18] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” ArXiv preprint arXiv:1608.03983, 2016.

[19] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko,
D. Droeschel, and S. Behnke, “Supervised autonomous locomotion
and manipulation for disaster response with a centaur-like robot,” Ac-
cepted for IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) 2018, http://www.ais.uni-bonn.de/
papers/IROS_2018_Klamt.pdf.

[20] D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping and
localization for autonomous navigation in rough terrain using a 3D
laser scanner,” Robotics and Autonomous Systems, vol. 88, pp. 104
–115, 2017.

Deep Reinforcement Learning to Acquire Navigation Skills for
Wheel-Legged Robots in Complex Environments

Xi Chen, Ali Ghadirzadeh, John Folkesson, Mårten Björkman and Patric Jensfelt

Abstract— Mobile robot navigation in complex and dynamic
environments is a challenging but important problem. Rein-
forcement learning approaches fail to solve these tasks effi-
ciently due to reward sparsities, temporal complexities and
high-dimensionality of sensorimotor spaces which are inherent
in such problems. We present a novel approach to train action
policies to acquire navigation skills for wheel-legged robots
using deep reinforcement learning. The policy maps height-
map image observations to motor commands to navigate to a
target position while avoiding obstacles. We propose to acquire
the multifaceted navigation skill by learning and exploiting a
number of manageable navigation behaviors. We also introduce
a domain randomization technique to improve the versatility
of the training samples. We demonstrate experimentally a
significant improvement in terms of data-efficiency, success rate,
robustness against irrelevant sensory data, and also the quality
of the maneuver skills.

I. INTRODUCTION

Deep Reinforcement Learning (RL) has enabled training
of highly flexible and versatile deep neural networks to
obtain action-selection policies for complex problems. The
complexity generally arises from (1) complicated dynam-
ics and the way actions at different time-steps affect the
long-term outcomes, (2) high-dimensionality of the action
space which makes it impossible to enumerate actions us-
ing classical approaches, and (3) high-dimensionality and
redundancies of the sensory observations. In such cases,
deep RL holds the promise of finding solutions, some-
times, demonstrating superior performances compared to
hand-crafted solutions or even compared to a human-expert
himself performing the task [1], [2]. However, the state-
of-the-art methods in deep RL are not generally applicable
in other problem domains. The methods suffer from issues
such as (1) reward sparsity, i.e., low-probable reward out-
come while randomly exploring consequences of actions, (2)
temporal credit assignment which refers to the problem of
crediting action-decisions made over a period of time given
a reward/punishment outcome, (3) data inefficiency, i.e.,
requiring huge amount of training samples to obtain a policy,
and (4) difficulties of learning a task-relevant representation
of input data which is critical to acquiring a generalizable
action-selection policy.

In this paper, we propose an RL approach to solve a
complex mobile robot navigation problem. We train a deep
neural network policy to control a mobile robot with high-
dimensional action spaces enabling complicated maneuvers,
e.g, slimming the body to pass narrow corridors or lifting
to cross over obstacles.The trained policy directly processes
height-map images to generate appropriate action commands.

The contribution of this paper is to introduce a method
which:

1) improves policy training by splitting the complicated
navigation task into a number of manageable naviga-
tion behaviors,

2) proposes a domain randomization technique, guiding
policy training to attend important cues of the in-
put observations. We experimentally demonstrate the
suitability of the trained policy, e.g., to attend to the
obstacles in front of the robot, but not the ones it has
already passed.

3) demonstrates an improvement of 20% success rate
compared to the state-of-the-art RL methods applied
to a challenging mobile robot navigation problem.

The structure of the paper is as follows: In the next section,
we outline related work (Sec. II), followed by introducing
required background (Sec. III). We introduce our method in
Sec. IV, and in Sec. V, we present our experimental results.
The conclusions and the future work are presented in Sec. VI.

II. RELATED WORK

In this section, we introduce recent studies that are mostly
related to our work. We first introduce a number of the
state-of-the-art deep RL methods, followed by an overview
of recent deep RL solutions for mobile robot navigation
problems. Also, we provide a short overview of domain
randomization approaches that are used recently to improve
RL policy training.

A. Deep reinforcement learning

Deep RL approaches to train neural network robot poli-
cies can be categorized as, (1) end-to-end policy training,
(2) concatenating separately trained neural network blocks,
and (3) guided policy search. End-to-end policy training
methods train deep neural network architectures directly with
minimum task-dependent engineering efforts. These methods
have been successfully applied to different complex tasks,
such as playing Atari games [2], [3], and a number of
3D simulated physics tasks, [4], [5], [6]. However, these
approaches are very data-inefficient and may not be directly
applicable to real robotic problems. The second approaches,
generally train perception and motor control layers of a
deep policy network separately. These layers are mostly
trained by learning a low-dimensional representation of the
data using auto-encoder structures. These approaches have
been applied to solve complex visuomotor tasks, e.g., [7],
[8]. A major limitation of these approaches is that the
structure of the network, data-representations, and training

individual blocks require extra engineering efforts. Guided
policy search [9] trains a deep policy network, end-to-end,
efficiently by converting the policy search problem into
supervised learning and trajectory optimization problems.
However, the limitation of this approach is that it requires
access to the true state of the system during the training
phase to solve the trajectory optimization part.

Our proposed solution belongs to the first category of the
approaches. We improve sample efficiency by splitting the
problem into simpler sub-tasks and also by exploiting domain
randomization techniques to enhance the versatility of the
training samples.

B. Deep RL solutions to mobile robot navigation

Navigation learning for a mobile robot with high degrees
of freedom, such as a wheel-legged robot, requires learning
motor controls which stabilize robot motions without falling
and also move the robot to a given target while avoiding
collisions with obstacles. Previous studies addresses these
problems separately. [4], [6], [10], [11] demonstrate stable
locomotion skills on flat surfaces with no obstacles. [12] and
[13] consider terrain-adaptive motions which enable the robot
to cope with more diverse and challenging sets of terrains and
obstacles. However, these methods do not take into account a
target position. [14] addresses navigation to a target position
by training a policy, end-to-end. However, the method is
only validated on a robotic platform with low degrees of
freedom. [15] and [16] proposed methods to combine the
locomotion and motion planning with hierarchical structures
with a two-step procedure: (1) training low-level controllers,
(2) acquiring a high-level planner given the trained low-level
controllers.

We focus on end-to-end training of a deep architecture to
learn locomotion skills and also reaching to different target
positions which requires long-term planning.Our method is
validated on challenging configurations with random start
and target positions.

C. Domain Randomization

Recently, domain randomization techniques are exploited
to transfer action policies trained in simulation to the real
world. These approaches randomize different aspects of the
tasks, such as dynamics, [17], or visual sensory observations,
[8], [18], [19], [20], We apply domain randomization to
improve the versatility of the training samples collected
from simple environments with few obstacles. The resulting
dataset contains more complex configurations with multiple
obstacles and challenging pathways.

III. PRELIMINARIES

In this section, we review related RL algorithms and intro-
duce the notation which is used in the rest of the paper. We
assume a Markov Decision Process (MDP) to represent our
system, which is defined by the tuple (S,A,P, r, p(s0), γ),
where S is a set of states, A is a set of actions, P :
S×A×S → [0, 1] is the transition probability, r : S×A → R
is the reward function, p(s0) : S → [0, 1] is the initial

state distribution, and γ ∈ [0, 1] is the discount factor. The
actions are sampled based on a parameterized stochastic
policy πθ : S × A → [0, 1], which assigns a probability
distribution over the actions conditioned on the state value.

For each episode, an initial state is drawn from p(s0). At
every time-step t, an action at is sampled from πθ(at|st), a
reward rt = r(st, at) is given by the environment and the
next state st+1 is given according to the transition probability
p(st+1|st, at). For every state-action pair in the trajectory,
the return is defined as the sum of discounted rewards, Rt =∑
t′=t γ

t′−tr(st′ , at′)]. The goal is to obtain a policy which
maximizes the expected return, η(π) = E[Rt], with respect
to all possible trajectories following the introduced sampling
procedure.

Actor-critic approaches train a policy in three steps, (1)
sampling a number of trajectories using the current policy
πθ, (2) estimating a value function representing Vπ(st) =
E[Rt], and (3) updating the policy parameters to increase
the likelihood of trajectories with higher returns. A common
approach, known as the policy gradient method, updates
policy parameters to maximize η(π) = E[log πθ(at|st)At],
where At is an estimate of the advantage function, found
as At = Rt − V (st). Intuitively, the policy is updated such
that state-action pairs with higher advantages become more
probable.

Trust region policy optimization (TRPO) [4] introduced a
similar surrogate function,

ηTRPOπθ
= E[

πθ(at|st)
πθold(at|st)

At − βDKL(πθold ||πθ)],

where, DKL represents Kullback Leibler (KL)-
divergence. TRPO uses a policy probability ratio,
ψθ = πθ(at|st)/πθold(at|st), instead of log πθ; furthermore
it penalizes deviations from the old policy by an extra
weight parameter β. In a more recent work, proximal policy
optimization (PPO), [5] derived an updated version of the
TRPO surrogate function by clipping the probability ratio
ψθ using a function Z(.) which clips input values to the
range [1 − ε, 1 + ε], where ε is a hyper-parameter. This
is equivalent to the TRPO’s KL-divergence penalty term
but forces the ratio of the current policy and old policy to
be close to 1, instead of penalizing the difference of the
policies. The surrogate function is found as the expected
minimum value of the clipped and unclipped probability
ratios multiplied by the advantage function, i.e.,

ηPPOπθ
= E[min(Z(ψθ)At , ψθAt)]. (1)

In this paper, we optimize the surrogate function defined in
Eq. 1 to train action policies.

IV. METHOD

In this section, we introduce our method to train an action-
selection policy for mobile robot navigation problems using
deep reinforcement learning. The policy maps a height-map
to a number of actions which move the robot to its target
location. We propose to train several secondary policies,
each to acquire a certain behavior, and then combine the

result of them to train the primary policy. We argue that
splitting such a complicated problem into a number of
manageable tasks would help the RL agent to overcome
difficulties with reward sparsity, credit assignment problem
and data inefficiency. Furthermore, we introduce a domain
randomization technique to efficiently learn to attend task-
relevant aspects of the sensory observations without further
interactive training using RL. In the rest of this section,
we provide details of our approach regarding (1) training
the secondary policies, (2) applying domain randomization
to improve perception layers of the policy, (3) training the
primary policy, and (4) structure of the network. A flow
diagram of how to obtain the primary policy is shown in
Fig. 1.

Fig. 1. The flow diagram of our method. First, we split the task and train a
number of secondary policies in environments with simple setup to acquire
different behaviors. Second, we save the successful trajectories learned by
the secondary policies and apply domain randomization to create a batch
which contains successful trajectories of the complex environments. Finally
we train our primary policy in the complex environments using samples
from both on-line exploration and domain randomized trajectory batch.

A. Policy training to acquire different behaviors
A behavior is defined as a maneuver strategy to move to a

target position while avoiding collisions with an obstacle.
We define the following behaviors for our mobile robot
navigation problem:

1) moving straight to the target position with no obstacle
along the path,

2) moving around an obstacle to reach a target,
3) driving over a high obstacle by lifting the body,
4) driving over a short but wide obstacle by lowering the

body and stretching the legs out,
5) squeezing the body to pass through narrow corridors.
A simple setup w.r.t. a given behavior is defined as an

environment with obstacles in which random action ex-
ploration results in higher task success rate realizing the
specific behavior. For example, for the behavior (3), we
make obstacles such that the robot has no other options
than moving to the target position while lifting the body
to avoid collisions. We combine the knowledge obtained by
the secondary policies to train the general policy. Dividing
a task into a number of behaviors resembles the way a
human acquire a multifaceted skill, e.g., playing tennis. In
this example, a trainee practices fore-hand and back-hand
hits separately to improve each individual skill, and then
combines them in a more realistic play condition.

Secondary policies are trained using the same method as
the primary policy. We use an actor-critic framework with
a network structure which shares parameters between the
policy and the value function. Network parameters, denoted
by θ, are found such that the following compound loss
function is optimized:

L(θ) = E[λ1ηπθ (θ) + λ2Lv(θ)], (2)

where, Lv is the value-function loss defined as ||Vθ(st) −
Rt||, ηπθ is as defined in Eq. 1, and the expectation is found
over sampled trajectories as described in Sec. III,

The pseudo-code for training secondary policies is pre-
sented in Alg. 1. For every behavior, we initialize a sec-
ondary policy as well as a number of simple environments
corresponding to that behavior. The first behavior which is
learned is to move straight to the target with no obstacles.
All other secondary policies are initialized with this trained
policy. We train every policy for a number of iterations. A
number of trajectories are sampled under the current policy
and for every action-state pair in these trajectories, the return,
advantage and policy probability ratio are found. Finally, the
policy and the value-function are updated with Stochastic
Gradient Ascent (SGD) w.r.t. the loss function defined in
Eq. 2. The latest trajectories which are found based on the
trained policies are stored for later use.

Algorithm 1 Training secondary policies
1: for every behavior b do
2: initialize policy πbθ.
3: prepare a number of simple train environments.
4: for every environment E do
5: for every iteration do
6: sample trajectories given πbθ and E.
7: for every (st, at) pair in every traj. i do
8: calculate Rt,i, At,i, ψbθt,i .

9: θbold ← θb.
10: update θ by SGD, w.r.t. Eq. 2.
11: store the latest trajectories.

B. Domain Randomization

We use domain randomization techniques to help the
policy to extract task-relevant aspects of the input observa-
tions. The policy directly maps an image observation, i.e.,
the height-map representation of the scene, to the motor
commands using a forward pass of the neural network.
Given a limited number of training data gathered by actively
interacting with the environment and the flexibility of the
network, there is a high risk that the policy attends to task-
irrelevant components of the observations, which limits its
applicability to unseen test environments.

We randomize non-essential aspects of the task, such as the
appearance, the positions and the number of obstacles in the
scene to improve generalization capabilities of the primary
policy. This randomization is applied to the simple envi-
ronments where the secondary policies are trained without

affecting the validity of the stored solutions. In other words,
we randomize original environments used by the secondary
policies by changing the obstacle configurations such that it
would not affect the success of the sequence of motor actions
found by the trained secondary policy in the corresponding
original environment. In this way, we obtain solutions to very
complex navigation problems without running the RL agent.
The RL agent is data-inefficient, and is not guaranteed to
find a solution.

Every environment used by the secondary policies is
randomized to generate a number of new environments. For
every new environment, the stored actions corresponding to
the original environment are applied sequentially and the
action-observation-return tuples are stored. In this case, we
will have ne×nτ×nernd new action-observation trajectories,
where ne is the number of original environments, each cor-
respond to nτ trajectories, and nernd number of randomized
environments. These new trajectories are used to train the
primary policy as explained in the next section.

C. Training the primary policy

The primary policy is trained with the same method and
architecture as the secondary policies but with a different
sampling strategy. Trajectories are sampled partially by fol-
lowing the primary policy given a number of new complex
environments. The rest of trajectories are directly taken from
the batch of domain randomized trajectories without running
on the robot. At the beginning of the training phase, samples
which are drawn from the primary policy mostly fail because
of the low-probability of reward events when making random
sequential action-decisions. This reward sparsity is compen-
sated by the samples drawn from the domain randomized
batch which only contains successful trials.

The pseudo-code for training primary policy is presented
in Alg. 2. The primary policy is initialized either randomly
or by any of the secondary policies. A number of train-
ing environments with complex obstacle configurations are
generated. The agent is trained in every environment based
on the samples drawn from the real interactions with the
environments and also samples from the domain randomized
batch. In the latter case, the advantages of the trajectories are
re-calculated with the updated value function. At each itera-
tion, the parameters of the policy and the value function are
updated using stochastic gradient ascent given the compound
training data.

D. Network Architecture

The network architecture, illustrated in Fig.2, maps the
inputs, consisting of a height-map image observation and
the robot and target poses, to a distribution over the motor
actions. It also outputs the state value by the value-function
sub-network. The network consists of three convolutional
layers to extract features from the height-map image. The
image features are concatenated with the robot configuration
and the target position, which are further processed by the
fully connected layers to output the action distribution and
the state value.

Algorithm 2 Training the primary policy
1: initialize primary policy πθ.
2: prepare a number of complex environments.
3: for every environment E do
4: for every iteration do
5: sample trajectories given πθ and E.
6: for every (st, at) pair in every traj. i do
7: calculate Rt,i, At,i, ψθt,i .

8: collect tuples (st, at, Rt) from the domain ran-
domized batch of traj.

9: for every (st,i, at,i, Rt,i) tuples do
10: calculate At,i using Vθ(st,i).
11: concatenate training data.
12: θold ← θ.
13: update θ by SGD, w.r.t. Eq. 2.

V. EXPERIMENT

In the experiments, we want to address the following
questions:

1) can we improve the training efficiency and the final
performance using the batch of domain randomized
trajectories?

2) does the primary policy learn to attend the task-relevant
components of the input observation?

To answer these questions, we run two experiments on
a navigation task with a reconfigurable wheel-legged robot
in simulated environments. In the first experiment, we train
a baseline model without the domain randomized trajectory
batch and compare the result to our primary policy trained
with the trajectory batch. We train the baseline policy and the
primary policy with the state-of-the-art reinforcement learn-
ing algorithm PPO. In the second experiment, we compare
the trajectory generated by different obstacle configurations
to investigate if the primary policy learns to attend the task-
relevant components of the observation.

A. Robot and Environment Setup

1) Robot Model: In the experiments we use a robot with
four legs and we assume the robot performs the same action
symmetrically to all legs. The robot can move and rotate
on the xy plane, the body height and the leg openings are
controlled by the three joints on each leg (Fig. 3). The action
space of the robot is 5 dimensional.

We use a discretized value to control each action dimen-
sion. For every step, the robot can move +/− 0.05m along
x and y axis, rotate +/ − 5degrees around its center axis,
can change the body height for +/−0.02m, and can stretch
legs for +/− 0.02m.

2) Environment Configuration: The environment is sim-
ulated by V-REP ([21]). In each episode, the initial robot
orientation and the target location are randomly generated.
We use three types of obstacles (Fig. 4), each of them
requires different locomotion skills to either drive around
or drive over it. The number, shape, and position of the
obstacles in the scene are randomly assigned. The input

Fig. 2. The network architecture used in this paper.

Fig. 3. The robot height and the width of leg opening are controlled
through separate channels.

image of the height map has the size of 1.6×1.6m centered
at the robot with a resolution of 0.05m/pixel.

The task is successful when the robot reaches the target
position. The episode is terminated when the robot drives
too far from the target or performs a maximum number of
steps.

Fig. 4. The three types of obstacle used in the experiments. The green
obstacle requires the robot to lower the body and open the legs, the yellow
obstacle requires the robot to lift the body, and the robot cannot drive over
the red obstacle.

3) Reward: The reward function consists of three compo-
nents: (1) a fixed time cost for each step rcost = −0.1, (2)
a progress reward rprogress = dt−1 − dt, where dt denotes
the distance from the robot to the target at time step t, and
(3) a fixed penalty rinvalid = −0.5 when the robot collides
to an obstacle, performs an impossible action or moves too
far from the target. The reward for each step is defined as:

r = rcost + rprogress + rinvalid (3)

The reward function is designed to encourage the robot to
move close to the target as soon as possible and reduce the
collision to the obstacles. We do not penalize motor cost or
specific motion types, i.e., move backward or sideways.

4) Secondary Policies: Fig. 5 plots the learning curves for
all 5 secondary policies. Since we simplified the environment

when training the secondary policies, all 5 policies can be
learned within a small number of samples.

Fig. 5. The learning curves of the 5 secondary policies w.r.t. the average
return and success rate. The horizontal axis represents the number of
trajectory generated.

5) Domain Randomization: We collect 103 trajectories for
every secondary policy. For each trajectory, we first mask
the areas which are affected by the actions and randomize
different obstacle configurations outside the masked areas.
Then, we replay the sequence of actions in the trajectory
and store the new action-observation-return tuples to the
trajectory batch. For each trajectory, we randomize 103 new
environments. Fig. 6 gives an example of randomizing a new
environment from a straight line trajectory.

Fig. 6. The process of randomize a new environment from a straight line
trajectory. In the left image, the blue point shows the target position and
the yellow square masks the essential area which is affected by a straight
line trajectory. In the right image, the obstacles are randomly generated in
the non-essential area which does not affect the validity of the straight line
solution

B. Evaluation

We train the baseline policy with the batch size of 10, 000,
the samples in the batch are from on-line exploration. We

train our primary policy using the batch size of 12, 000,
where 10, 000 samples are from on-line exploration and
2, 000 samples are from th domain randomized trajectory
batch.

1) Result of Primary Policy: Fig. 7 plots the learning
curves of the primary policy w.r.t. the average return and
the success rate. Using samples from the domain randomized
trajectories, the overall success rate increases by nearly 20%.
While training, we observe a considerable difference in the
performance of the case where the robot needs to drive
over obstacles. Similar to the problem discussed in [22], the
penalty we assign to the collision may hinder exploration,
i.e., the robot learns not to move close to the obstacles.
This problem is compensated by training with the samples
from the domain randomized trajectories which contains
successful actions for similar configurations.

The goal of the task is to reach to the target position.
However, as a navigation task, the quality of the trajectory
is important as well. In Fig. 8, we compare the quality of the
trajectory w.r.t. the success rate of generating a collision-free
trajectory and the length of the trajectory in the number of
steps. For generating a collision-free trajectory, the success
rate of our primary policy remains at 80%, while the baseline
policy drops to 55%. Moreover, the average length of the
collision-free trajectory of our primary policy is also shorter.
Using samples from the domain randomized trajectories
improves not only the success rate but also the quality of
the output motions.

Fig. 7. The average return and the success rate of the two policies. The
horizontal axis represents the number of trajectory used in training.

Fig. 8. The trajectory length in number of steps and the successful rate
for generating a collision free trajectory. The horizontal axis represents the
number of trajectory used in training.

2) Attend task-relevant components of the observation:
We compare the trajectories generated using different ob-
stacle configurations to verify if the primary policy learns to
attend the task-relevant components of the input observation.
We first sample a configuration and generate a baseline
trajectory. We then remove one obstacle from the scene
and generate another trajectory with the missing obstacle.
We repeat the same step for all obstacles in the scene
and compare the results to find out how much the missing
obstacle affects the policy, or how relevant this missing
obstacle is to the task.

Fig. 9 gives an example of the relevance of each obstacle
to the task. The obstacles colored by white has low relevance,
which means the trajectory does not change after removing
them. The obstacles colored by red has higher relevance,
which can affect or completely change the choice of trajec-
tories. From Fig. 9 we note that the obstacles which close
to the current path or block a better path give more impact
to the policy. Our primary policy is able to attend the task-
relevant components from the observation.

Fig. 9. An example of the relevance of each obstacle to the task. In the left
image, the relevance of obstacle is color-coded from white to red, where
white denotes low relevance and red denotes high relevance. The number
in the image denotes the index of the obstacles and the blue point denotes
the target position. In the right image, the gray arrow denotes the trajectory
generated using all obstacles in the scene and red arrows are trajectories
generated with one missing obstacle. The numbers near the red trajectories
indicates which obstacle is removed from the scene.

VI. CONCLUSIONS

In this work, we present a novel approach to acquire
navigation skills for the wheel-legged robot by learning
and combining a number of manageable secondary policies.
Using the trajectory batch created by secondary policies and
domain randomization technique, our approach overcomes
the difficulties caused by data inefficiency, reward sparsity,
temporal credit assignment problem, and improves the final
performance on both success rate and motion quality.

In the future, we plan to continue our work with more
diverse environment settings, such as introducing obstacles
with irregular shape and uneven terrains, which requires
more challenging locomotion skills. Also, we intend to
investigate the possibility of applying our work to a real-
world robotic system.

VII. ACKNOWLEDGMENTS

This work is supported by the European Unions Horizon
2020 research and innovation program under grant agreement
No. 644839 (CENTAURO).

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[3] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning, 2016, pp. 1928–1937.

[4] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[7] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 512–519.

[8] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman, “Deep
predictive policy training using reinforcement learning,” in Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference
on. IEEE, 2017, pp. 2351–2358.

[9] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[10] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[11] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa,
“Learning continuous control policies by stochastic value gradients,” in
Advances in Neural Information Processing Systems, 2015, pp. 2944–
2952.

[12] X. B. Peng, G. Berseth, and M. Van de Panne, “Terrain-adaptive loco-
motion skills using deep reinforcement learning,” ACM Transactions
on Graphics (TOG), vol. 35, no. 4, p. 81, 2016.

[13] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, A. Eslami, M. Riedmiller et al., “Emergence of locomotion
behaviours in rich environments,” arXiv preprint arXiv:1707.02286,
2017.

[14] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learn-
ing: Continuous control of mobile robots for mapless navigation,” in
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. IEEE, 2017, pp. 31–36.

[15] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and
D. Silver, “Learning and transfer of modulated locomotor controllers,”
arXiv preprint arXiv:1610.05182, 2016.

[16] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 41,
2017.

[17] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv:1710.06537, 2017.

[18] J. Tobin, W. Zaremba, and P. Abbeel, “Domain randomization and gen-
erative models for robotic grasping,” arXiv preprint arXiv:1710.06425,
2017.

[19] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on. IEEE, 2017, pp. 23–30.

[20] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
arXiv preprint arXiv:1709.07857, 2017.

[21] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scal-
able robot simulation framework,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013,
pp. 1321–1326.

[22] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” in Advances in Neural Information Processing
Systems, 2017, pp. 5055–5065.

	Introduction
	Method Extensions
	Evaluation
	WP5 Integration
	Conclusion
	Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction
	Learning Abstract Representations for Locomotion Planning in High-dimensional Configuration Spaces
	Additional Work in Workpackage 5

