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Executive Summary

This deliverable describes our approach to autonomous single-arm pick and place for the CEN-
TAURO system.
The deliverable presents the two main components involved in this task: object perception and
manipulation planning. Object perception is handled by different components developed at
LIU and UBO, while the manipulation planning stages have been developed at UBO only. We
describe the developed methods in detail and report on successful initial experiments using the
integrated CENTAURO system.
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1 Introduction
This CENTAURO Deliverable D6.3: Autonomous single arm pick and place manipulation skills
presents implemented methods which allow the CENTAURO system to perform autonomous
single-arm manipulation. These methods can be divided into following main categories: per-
ception of the workspace, grasp generation and arm trajectory planning. These methods are
covered by tasks T6.1: Object and workspace perception and T6.2: Collision-aware motion
generation. Combined, they represent a solution for T6.3: Single-arm object pick and place.
Figure 1 gives an overview over the components involved in this deliverable.
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Figure 1: Overview of the pipeline for autonomous manipulation. Sensors are colored red,
pipeline components yellow, and external modules from other workpackages are colored grey.
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2 Manipulation Setup
In this section we describe setup used in the CENTAURO system to perform autonomous ma-
nipulation.

2.1 Calibration of Non-overlapping Cameras
The CENTAURO robot is equipped with three 2-megapixel color cameras, mounted in such
a way that their views have only a minimal overlap. This camera configuration provides the
operator with the largest possible combined field of view with a minimum number of cam-
eras. However, it also prevents estimation of the relative camera poses with standard calibration
methods. To address this problem we have developed a new calibration method [16], where
additional cameras are used temporarily to create the required overlap. In comparison to pre-
vious methods developed for the same purpose, such as [6] and [1], this new approach has
considerable lower calibration error and increased robustness to noise.

To evaluate the impact of additional cameras providing significant overlap, we experiment
on synthetic data since the accuracy cannot be determined without ground truth or additional
sensors. Briefly, we generate noise-free images, apply camera noise, estimate the extrinsic
camera parameters and evaluate the result.

We experiment with synthetic 1600 x 1200-pixel cameras with very wide-angle lenses (focal
length 1.67mm) configured either as a pair of cameras 90 degrees apart, three cameras at 45
degrees, and five cameras at 22.5 degrees, outward facing on a circle. Images are generated
from a synthetic scene with 3D modeling software. In each case, five checkerboard calibration
patterns (7-by-9 squares) are manually placed, one at a time, to maximally cover the joint field
of view, as shown in figure 2. Images are rendered and the associated ground-truth image 2D
coordinates of all pattern landmarks are stored. Errors caused by the camera - Gaussian blur
(σ = 0.5), vignetting (cos4(x), scaled to 0.25 gain at left/right image edge) and shot noise
(Poisson distribution, approximated as N(x, 0.1

√
x + 2), px ∈ [0, 255] pixel intensity) - are

simulated and added to the images. The calibration pattern landmarks are then located with
sub-pixel precision (findChessboardCorners() in OpenCV). Finally, Gaussian noise
(N(0, σd) with σd ∈ [0.0, 0.7]) is added to the landmark coordinates to simulate residual camera
distortion error. The coordinates are then used to estimate the relative transform between the
two cameras in a pair.

Figure 2: Camera and pattern setups with 22.5, 45 and 90 degree rotations between cameras.
Insets show the pattern placements in the viewport of the right camera in the pair. Their appear-
ance in the left camera are mirror-symmetric. The ground-plane grid lines are 1 meter apart.
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Figure 3: Expected pose rotation errors and expected pose translation errors as functions of
added εd noise of magnitude σd.
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Figure 4: Distribution of reprojection errors
.

For each of the camera configurations, we generate M = 1000 calibration runs, with dif-
ferent noise samples added each time to acquire a reasonable sampling of the error distribution.
N-view camera setups are simulated by linking the relative poses Pi,j of pairs of cameras such
that PN,1 =

∏N−1
k=1 Pk+1,k. For example, in a three-view setup, P31 = P32P21. In addition we

compute the reprojection errors of 10,000 random points ~y = (x, y, z, 1)T , uniformly distributed
across the image plane at uniformly random depths z ∈ [0.1, 100].

The mean pose rotation and translation errors in PN,1 are shown in figure 3. It is apparent
that one additional camera during calibration (i.e N=3) exhibits greater robustness to noise
compared to no additional camera. More cameras (i.e N=5) do not improve the robustness.

The distribution of reprojection errors is shown in figure 4, with coordinate noise σd = 0.4
chosen as an example. It is clear that the distribution for N=3 cameras has a lower error overall
than either alternative.

2 MANIPULATION SETUP 7
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Figure 5: Turntable capture and scene synthesis. Left: Different drills on the turntable as
captured by a DSLR camera. Right: Synthetic training scene generated by inserting new objects
into the scene. The top image shows the resulting color image, the bottom shows synthetic
ground truth for training the segmentation model.

3 Object Perception
In order to plan a grasp an object, the exact position and orientation have to be known. The
target object has to be detected and localized. In this section, we discuss object perception
methods which were implemented. In general, the object perception pipeline detects individual
objects, segments them, and estimates the object pose.

3.1 Object Detection and Segmentation
To enable manipulation of the workspace, the CENTAURO robot has to detect and determine
the pose of useful objects in its environment, for example tools. For the purpose of object
detection and semantic segmentation, we train CNN-based models on a dataset of tools. In the
project, two alternative detection and segmentation pipelines have been developed, with focus
on either speed or precision.

3.1.1 YOLO with Tabletop Segmentation

The first alternative is based on the YOLO object detector [15]. The rectangles output by the
detector also contain background pixels. If we assume that the objects are placed on a planar
surface, which constitutes most of the background, most of it can be removed. This is done by
estimating planes in the depth image and then remove all points belonging to the significantly
supported planes. After this step, in the ideal case the remaining points belong to the objects.

3.1.2 Semantic Segmentation

A more integrated pipeline was developed using semantic segmentation, which directly pro-
duces pixel- (or point-)wise segmentation. Previous efforts have been based on a semantic
segmentation network based on the OverFeat feature extractor [8]. While the gains from using

3 OBJECT PERCEPTION 8
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a) Input scene b) Segmentation mask c) Cropped image

d) Extracted featurese) Estimated pose

Semantic
Segmentation

Pose
Estimation

RefineNet

Crop &
Red shift

Figure 6: Steps in pose estimation.

pretrained CNNs as feature extractors or finetuning them to the task at hand are immense, CNNs
pretrained for classification suffer from low spatial resolution in their later stages.

Our current pipeline switched to a more modern architecture called RefineNet [12], which
addresses this problem by subsequently upsampling and merging higher-level feature maps with
lower-level features of higher spatial resolution—creating a representation of the input image
with both highly semantic information and high spatial resolution, which is ideally suited for
semantic segmentation.

Deep learning methods require large amounts of training data. We address this problem
by generating new training scenes using data captured from a turntable setup. Automatically
extracted object segments are inserted into precaptured scenes (see Fig. 5). For details on the
capturing and scene synthesis pipeline, we refer to [20].

3.2 Pose Estimation Network
To facilitate autonomous grasping of objects, we need the 6D pose of the objects. We aug-
mented the semantic segmentation pipeline with an additional CNN to estimate the 5D pose
(rotational, and X and Y of the translational components) of the objects from the RGB crops of
the objects from the scene. The pose estimation module is trained with the features extracted
from the RefineNet module discussed in the Sec. 3.1.2. The steps during the inference of the
pose estimation module is shown in Fig. 6. The crop is determined based on the expected max-
imum size of the objects in the scene from semantic segmentation results and the pixels in the
crop which do not belong to the object are pushed towards red. This representation encodes the
segmentation results and decreases attention to the background (which may contain other ob-
jects). To generate the ground truth poses for training the network, the data acquisition pipeline
described in [20] was extended to record turntable poses automatically and fuse captures with
different object poses or different objects (see Fig. 5) with minimal user intervention.

We evaluated two different types of CNN architectures shown in Fig. 7. The single-block
output variant predicts six values (rotation represented as a unit quaternions and x and y of

3 OBJECT PERCEPTION 9
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Figure 7: Pose estimation network architecture. Left: Single-block output variant. Right: Multi-
block output variant.

Table 1: Average pose estimation errors on turntable training and evaluation dataset.

Translation [pix] Rotation [◦]

train val train val

Driller 8.3 9.9 7.6 10.2
Extension box 9.8 12.8 7.8 9.9
Stapler 6.3 8.1 4.3 6.4

translation) by taking RefineNet features of the crops of the objects as input, whereas the multi-
block output variant predicts a set of six values for each category of the objects, with each set
corresponding to one category. While computing the loss for the multi-block output variant,
only the output corresponding to the relevant category of the object is subjected to the loss
function and only the part of the network relevant for the output block is updated during back-
propagation step. Our evaluation showed that the single-block variant performed slightly better
in the presence of occlusion, and was thus chosen for use in the CENTAURO project. Table 1
shows quantitative results of training the pose estimation model on three objects captured with
the turntable setup.

3.3 Feature-based Point Cloud Registration
In this work we integrate descriptive high-dimensional features into a probabilistic registration
framework [4]. In contrast to the from point-wise color observations that were used in [5],
these high-dimensional features capture the geometrical properties of the local neighborhood
and are typically based on histograms. We use the Point Feature Histograms (PFH) [19], due
to its discriminative power and invariance to rigid transformations. However, other types of
invariant features can also be employed in our framework. The PFH uses both the locations and
normals of points in a fixed-sized neighborhood. For each pair of points in the neighborhood,
three angular features are extracted using an invariant reference frame. The descriptor is then
constructed as a 3-dimensional histogram of these angles for all pairs, resulting in a feature
vector of dimension 53 = 125.

To incorporate the high-dimensional histogram representation into a probabilistic frame-
work, we cluster the features using K-means. In this way, each histogram is labeled by the
corresponding cluster index, and the observed feature of a specific point is given as the index
of its histogram vector. Finally and similar to [5], this representation is used in an expectation
maximization framework, where the likelihood of a categorical distribution over all observed
features is maximized.

Using the Stanford Lounge Dataset, we compare our method to standard ICP [2], to color-

3 OBJECT PERCEPTION 10
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Table 2: A comparison our approach with state-of-the-art registration methods on the Stanford
Lounge Dataset. The results are reported in terms of average and standard deviation of the inlier
rotation errors, together with average failure rate.

Avg. err Std. dev. Failure rate (%)

ICP[2] 4.32× 10−2 2.53× 10−2 15.70
Color GICP[11] 1.72× 10−2 1.75× 10−2 1.27
JRMPS[7] 1.78× 10−2 1.35× 10−2 3.67
CPPSR[5] 1.54× 10−2 1.08× 10−2 1.00

Ours [4] 1.54× 10−2 1.08× 10−2 0.6

supported generalized ICP (GICP) [11], and to the probabilistic registration methods JRMPS [7]
and CPPRSR [5], see Table 2. Our method achieves state-of-the-art result in terms of error,
comparable to CPPRSR, while significantly reducing the registration failure rate.

3.4 Object Detection and Pose Estimation
The model point-cloud is acquired by scanning an instance of each object. These models can
be deployed on the input data generated by the Kinect v2, which provides both color and depth
information. By combining the detection with the depth information we obtain a 3D point-cloud
representation of the object.

Once the object points have been extracted from the sensor data, we can find the 6D object
pose relative to the camera. This is done by aligning the detected object points to a model point-
cloud using the algorithm described in Section 3.3, or the previous method in [5]. In Figure 8
we see an example where a detected hammer, denoted as input, is aligned to the model hammer.

Figure 8: Object detection and pose estimation. Left: YOLO detection of hammer. Right: Pose
estimation of detected hammer. The input hammer is aligned to the model hammer using the
method described in Section 3.3.

3 OBJECT PERCEPTION 11
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4 Manipulation Planning
In order to perform an actual physical manipulation with an object it is necessary to carefully
plan all the actions. Such planning allows to successfully accomplish a task in safe way for the
robot and its surroundings. Manipulation planning can be decomposed into two main steps:

• Grasping generation

• Arm trajectory generation

During the first step a feasible grasp is generated. It should allow to hold the object reliably
and its corresponding pre-grasp pose should be reachable by the arm. In the second step a
feasible trajectory of the arm to reach the pre-grasp pose is generated. The trajectory should
approach given pre-grasp pose as fast as possible while avoiding any collisions. When the
pre-grasp pose is reached, the object can be grasped and the next iteration of the manipulation
planning can start: given the task, next arm position is generated together with a trajectory
necessary to reach it.

4.1 Grasping Generation
The method for generating the grasping is based on the observation that objects within a cat-
egory are often similar in their shapes and usage. This approach transfer grasping skills from
known instances to novel instances of an object category such as drills, hammers, screwdrivers,
among others. This method incorporates category-level information by learning a shape space
of the category.

Our method is divided into two phases: a learning phase and an inference phase. In the
learning phase, the objective is to create a class-specific linear model of the transformations
that a class of objects can undergo. We do this by first selecting a single model to be a canonical
instance of the class, and then we find the transformations relating this instance to all other
instances of the class using Coherent Point Drift (CPD) [13]. We then find a linear subspace of
these transformations, which becomes our transformation model for the class. In the inference
phase, the objective is: given a newly observed instance, search this subspace of transformations
to find the transformation which best relates the canonical instance to the observed instance.
Grasping information from the canonical model is also transformed to the observed instance
and used to generate the final motion of the robot.

We define a category or class as a set of objects which share the same topology and a similar
extrinsic shape. We find a descriptor vector of the deformation field that the canonical model
has to undergo to transform into the training sample. Finally, we apply Principle Component
Analysis (PCA) on this matrix to find a lower-dimensional manifold of deformation fields for
this class.

With the transformation model we can now start registering the canonical shape to novel in-
stances in order to estimate the underlying transformation. The parameters of the transformation
are given by the latent vector plus an additional rigid transformation. The rigid transformation
is meant to account for minor misalignments in position and rotation between the target shape
and the canonical shape at the global level. We concurrently optimize for shape and pose using
gradient descent. We want to find an aligned dense deformation field which when applied to the
canonical shape C, minimizes the distance between corresponding points in the observed shape
O.

From experiences with an anthropomorphic robotic hand (Fig. 9), namely the multi-fingered
Schunk hand [18], we observed that a functional grasping cannot be described only by the final

4 MANIPULATION PLANNING 12
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Figure 9: Anthropomorphic grasping of a drill with the Schunk hand.

joint configuration of the entire system (manipulator plus hand). During the motion, the hand
can make use of geometrical and frictional advantage constraints to increase the chances of a
successful grasping. For instance, for grasping drills, we can first make a lateral contact with
the palm followed by a contact of the thumb with the rear part of tool, creating static frictional
forces that may help during the grasp.

We represent a grasping action as a set of parametrized motion primitives. The parameters
of the motion primitives are poses expressed in the same coordinate system of the shape of
the object. These poses need to be defined only for the canonical model. For new instances,
the poses are found by warping the poses of the canonical model to the instance. Because the
warping process can violate the orthogonality of the orientation, we orthonormalize the warped
poses.

We tested our method on the Drill category. We obtained the models from two online CAD
databases: GrabCad1 and the 3DWarehouse2. We trained the Drill models with their canonical
shape and 9 additional samples. We evaluated the performance of our method’s robustness to
noise, misalignment, and occlusion and compared our results against results given by CPD.
Each test was run on a full view of the object and on six different partial views of the object. To
obtain the partial views, we used ray-casting on a single view of a tessellated sphere.

The results of our experiments are plotted in Fig. 10. We use the abbreviation CLS (Cate-
gorical Latent Space) for referring to our method. When a shape is fully visible with or without
noise, CPD outperforms our method. This is rather to be expected as CPD is the source of train-
ing data from which we build our registration model. On the other hand, when the observed
shape is misaligned, our method outperforms CPD, which can be explained by the additional
rigid transformation component of our method. Moreover, when the shape becomes partially
occluded, the method also outperforms CPD thanks to the topological information that lies in
the latent space, which is not available in CPD.

For testing the grasping transference, we conducted a set of experiments using the multi-
fingered Schunk hand, which has a total of 20 Degrees of Freedom (DoF) from which 9 are
fully actuated. The experiments were carried out in the Gazebo simulation environment. The
tests were performed on the Drill category. Due to the reduced number of meshes, we used
cross-validation and created five transformation models leaving two testing samples for each
transformation model. A trial was defined as successful if after the execution of the motion,
the drill was held by the robotic hand. We got a success rate of 0.8 on grasping the drills. The
successful grasping is shown in Fig. 11,

More details on this method can be found in [17].
1https://grabcad.com/library
2https://3dwarehouse.sketchup.com/
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Figure 10: A comparison of our method (CLS dotted blue line) against CPD (red line). The first
two plots show the results on fully observed shapes, while the last two, on partially observed
shapes. Our method outperforms CPD on partial views of objects and misaligned fully observed
shapes.

Figure 11: On the left, the grasping of the canonical shape is performed. On the right, the
grasping is transferred to a new instance.

4.2 Arm Trajectory Generation
In order to reach a generated grasp or deliver the grasped object to a target position it is
necessary to generate a collision free feasible trajectory. We solve this problem by extend-
ing a popular optimization method: Stochastic Trajectory Optimization for Motion Planning
(STOMP) [10]. In the original STOMP, the duration of the trajectory is predefined and fixed.
We propose a way to optimize duration as well. We further introduce a novel cost compu-
tation policy that allows to take full control over the computational effort, which lowers the
runtime. We propose a cost function with five components: collisions, joint limits, orientation
constraints, joint torque, and duration minimization. Each cost component is normalized to
have values in the interval [0, 1]. By introducing an importance weight for each component, it
is possible to set priorities, which allows obtaining qualitatively different trajectories according
to the user preferences. Optimization is performed in two phases to reduce computations: with
simplified and full cost functions. Our method is described in details in [14].

In order to evaluate the method we performed various experiments in simulation and with
real robots. Experiments included comparison of runtime and success rate against several other
planning methods: Lazy Bi-directional KPIECE (LBKPIECE)3, which uses a discretized rep-
resentation of projected state space in order to find a solution and is a combination of [21]
and [3], RRTConnect [9] from OMPL [22], STOMP-Industrial4, which is a newer implemen-
tation of the original STOMP. The experiments demonstrated that our method outperformed
compared algorithms and that each component of the method performs intended optimization.

3http://ompl.kavrakilab.org/classompl_1_1geometric_1_1LBKPIECE1.html
4https://github.com/ros-industrial/industrial_moveit
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Detailed descriptions of the experiments and their results can be seen in [14].
STOMP-New was tested with an Kuka iiwa manipulator on an omnidirectional mobile base.

This configuration resembles the general principle present in the Centauro robot: self-moving
body with an arm to perform manipulation upon arrival to the target location. The objective was
to pick up different objects in different locations across the arena. There were three different
objects: metal engine support parts of two sizes and engine pipes. Our method was used to plan
trajectories for the iiwa arm to reach a pre-grasp pose and to deliver a grasped object to a pre-
release pose, which is a classical pick and place task. In order to plan collision-free trajectories
with objects of different shape during one run, rough approximations of these objects were
attached and detached from our collision model on the fly. The algorithm planned several
dozen trajectories during the challenge which allowed for successfull pick and place. Typical
trajectory for object delivery is depicted in Fig. 12.

Figure 12: Execution of planned trajectory for object delivery to a pre-release pose.

In addition, we performed a replanning experiment, which shows the capability of our
method to perform a quick replanning when an obstacle interferes with the already planned
trajectory. An initial trajectory was planned with usual setting. However, right after planning
process has finished, an obstacle was inserted on the way. Since during execution the remainder
of the trajectory is being checked for collisions using new measurements, potential collision
was detected. The execution of the trajectory was stopped and the replanning was performed,
which allowed to achieve avoidance of initially unconsidered obstacle. In Fig. 13 one can see
the robot executing the final trajectory, replanned to avoid the box.

4 MANIPULATION PLANNING 15
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Figure 13: Replanning with iiwa arm. Left: Two trajectories: initial (lower line) and replanned
(upper line), which was produced when previously unconsidered obstacle (box in the middle)
interfered the initial trajectory. Right: iiwa arm executing a replanned trajectory, avoiding the
previously unconsidered obstacle (box).

5 Integrated Manipulation Skills
Integrating together methods described in previous sections, we obtain a system which is capa-
ble to perform autonomous pick-and-place manipulation. Initial integration occured during the
integration meeting at SSSA in Pisa during October 2017.

In a first test, we tested the trajectory optimization method described in Section 4.2 in iso-
lation. The test demonstrated correctness of the interfaces and that the component is ready to
be integrated. We performed optimization of arm trajectory using low duration cost importance
weight in order to obtain relatively slow movement due to safety concerns. All other weights
were in their neutral positions of 0.5. The optimization yielded a smooth trajectory in 0.39 s,
which was successfully executed on CENTAURO robot.

A second experiment confirmed integration of most components of the object perception
and grasp generation pipeline by grasping a drill autonomously. The semantic segmentation
module (Section 3.1.2) was trained on synthetic scenes generated from turntable captures of
different drills. It was then used to segment live point cloud data from the Kinect2 observing
a novel drill instance (see Fig. 14), which was not part of the training set. The pose estimation

Figure 14: Object Perception during the drill grasping experiment. Left: Post-processed object
contour from semantic segmentation. Right: Kinect2 3D point cloud with estimated drill pose
from the pose estimation network.

5 INTEGRATED MANIPULATION SKILLS 16



CENTAURO – 644839 D6.3 Autonomous Single-Arm Pick and Place Manipulation Skills

Figure 15: Transferring grasping knowledge to the presented novel instance. The input point
cloud is at the leftmost while the inferred shape is at the rightmost.

network (Section 3.2) predicted an initial pose estimate. Then the grasp generation module
(Section 4.1) was used to register the point cloud to a canonical model and transfer a predefined
grasp from the canonical model onto the observed instance (see Fig. 15). Finally, the calculated
trajectory was executed and the drill grasped successfully (see Fig. 16).

Figure 16: Autonomous drill grasping experiment during the Pisa Integration Meeting.

5 INTEGRATED MANIPULATION SKILLS 17
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6 Future Work
The next steps in the project related to this work package can be summarized as:

• Incorporate the Kinect v2 data into trajectory optimization to obtain a collision map of
higher density in the goal region.

• Perform experiments for autonomous placing, as only picking was tested.

• Perform experiments with left arm for pick and place of heavier objects.

• Evaluate the system on different kinds of objects.

As in any research project, it is expected that after the evaluation steps some of the current
functionalities may have to be modified, extended, or even replaced.

6 FUTURE WORK 18
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Appendix
The following papers are enclosed below in the order of their appearance in the report:

1. Diego Rodriguez, Corbin Cogswell, Seongyong Koo, and Behnke Sven. Transferring
grasping skills to novel instances by latent space non-rigid registration. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), (Accepted) May 2018

2. Dmytro Pavlichenko and Sven Behnke. Efficient stochastic multicriteria arm trajectory
optimization. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017
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Transferring Grasping Skills to Novel Instances
by Latent Space Non-Rigid Registration

Diego Rodriguez, Corbin Cogswell, Seongyong Koo, and Sven Behnke

Abstract— Robots acting in open environments need to be
able to handle novel objects. Based on the observation that
objects within a category are often similar in their shapes and
usage, we propose an approach for transferring grasping skills
from known instances to novel instances of an object category.
Correspondences between the instances are established by
means of a non-rigid registration method that combines the
Coherent Point Drift approach with subspace methods.

The known object instances are modeled using a canonical
shape and a transformation which deforms it to match the
instance shape. The principle axes of variation of these defor-
mations define a low-dimensional latent space. New instances
can be generated through interpolation and extrapolation in
this shape space. For inferring the shape parameters of an
unknown instance, an energy function expressed in terms of the
latent variables is minimized. Due to the class-level knowledge
of the object, our method is able to complete novel shapes from
partial views. Control poses for generating grasping motions
are transferred efficiently to novel instances by the estimated
non-rigid transformation.

I. INTRODUCTION

People can be given a screwdriver that they never saw
before, and they will immediately know how to grasp and
operate it by transferring previous manipulation knowledge
to the novel instance. While this transfer happens effortless in
humans, achieving such generalization in robots is challeng-
ing. Manipulating novel instances of a known object category
is still an open problem. Although the manipulation of known
objects can be planned offline, many open-world applica-
tions require the manipulation of unknown instances. Our
approach transfers manipulations skills to novel instances by
means of a novel latent space non-rigid registration (Fig. 1).

Robots are often equipped with RGB-D sensors to per-
ceive their environment in 3D. In order to reconstruct the
full shape of an object—desirable for planning grasping—
multiple views of the object must be taken and fused into
a single 3D model. However, robots are not always able
to obtain the required views for generating the full model,
because of obstructions or unreachable observation poses,
e.g., an object lying at the inner corner of a shelf. Fortunately,
it is frequently not necessary to measure occluded object
parts if they can be inferred from prior object knowledge.

In this paper, we propose a method for generating grasping
motions for novel instances from a single view by making
use of category-level extrinsic shape information residing in
a learned latent space. Our method accumulates object shape
from multiple known instances of a category in a canonical
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Fig. 1: Control poses are transferred to the shape of a novel instance by
latent space non-rigid registration and used to generate a valid grasping
motion.

model. The learned latent space of shape variations enables
a category-specific shape-aware non-rigid registration proce-
dure that establishes correspondences between the novel view
and the canonical model. By linearly interpolating between
low-dimensional shape parameters of the known instances,
and by extrapolation in this shape space, a manifold of
plausible shapes belonging to the modeled category can be
generated.

Our method finds a transformation from the canonical
model to a view of a novel instance in the latent space—
linearly interpolated and extrapolated from other transfor-
mations found within the class—which best matches the
observed 3D points. This estimates the shape parameters of
the novel instance and allows for inference of its occluded
parts. The non-rigid transformation maps control poses from
the canonical model to the novel instance, which are then
used to generate the grasping motion for it.

The remainder of this paper is organized as follows. In
the next section, we discuss related works. Section III gives
an overview of our approach. The necessary background is
then presented in Section IV. In Section V, we describe
our approach in detail. We evaluated our method in multiple
experiments which are presented in Section VI.

II. RELATED WORK

A. Non-Rigid Registration

Since Chen and Medioni [1] introduced the Iterative
Closest Point (ICP) algorithm, numerous variations have



been proposed for rigid registration [2], [3]. For non-rigid
registration, priori restrictions or regularization on the mo-
tion or deformation of the points between sets are often
imposed. Different transformation priors such as isome-
try [4]–[6], elasticity [7], conformal maps [8]–[10], thin-
plate splines [11], [12], and Motion Coherence Theory [13]
have been used to allow for or to penalize different types of
transformations.

Many methods use non-rigid registration for surface recon-
struction [14]–[19]. Brown and Rusinkiewicz [12] and Li et
al. [14] proposed surface reconstruction methods for global
non-rigid registration. Methods such as Li et al. [15] and
Zollhöfer et al. [20] use a Kinect depth camera to capture
an initially low-resolution 3D surface and use non-rigid
registration to continuously add higher-frequency details to
the model with each new frame.

Recently, Newcombe et al. [19] proposed a non-rigid
dense surface reconstruction method using dense non-rigid
registration. From a sequence of depth images, they calculate
a dense 6-dimensional warp field between frames. They then
undo the transformations between each frame and rigidly
fuse the scans into one canonical shape. The dense warp field
is estimated by minimizing an energy function. Although
this method is able to deform a scene in real-time toward a
canonical shape, the use optical flow constraints makes this
method inadequate for large deformations or strong changes
in illumination and color.

B. Class-Level Shape Spaces

To create a parameterized space of shapes, several methods
have been proposed. Blanz and Vetter [21] create a mor-
phable model of faces able to create novel faces and to
interpolate between faces using a few parameters. Similarly,
Allen et al. [11] create a shape space of human bodies using
human body range scans with sparse 3D markers. Hasler et
al. [22] extend this space to include pose, creating a unified
space of both pose and body shape. This allows them to
model the surface of a body in various articulated poses more
accurately.

Other approaches as the one presented by Nguyen et al.
[23] establish shape correspondences by creating collections
of similar shapes and optimizing the mapping at a global
scale. Huang et al. [24] also use collections of shapes to
enforce global consistency. They create a small collection
of base shapes from which correspondences are established
between all other shapes.

Burghard et al. [25] propose an approach to estimate
dense correspondences on a shape given initial coarse cor-
respondences. They use the idea of minimum description
length to create a compact shape space of related shapes
with strongly varying geometry. However, this method does
not perform well in the presence of noise or incomplete
scans. Engelmann et al. [26] learn a compact shape manifold
which represents intra-class shape variance, allowing them
to infer shape in occluded regions or regions where data
might be missing or noisy such as on textureless, reflective,
or transparent surfaces. This approach however does not give

correspondences between points and do not offer any kind of
transformation, which limits its applicability to transferring
grasping knowledge.

C. Transferring Grasping Skills

Stueckler et al. [27] proposed a method for manipulation
skill transfer using non-rigid registration. The registration
finds a non-rigid transformation between a known instance
where manipulation information—such as grasp poses or
motion trajectories—are available and a novel instance from
the same class. The non-rigid transformation is applied to
map trajectory control poses towards the newly observed
instance, which allows for use of the novel object. We extend
this work by modeling shape and grasping not for single
known instances, but within a category, which allows for
learning typical variations of a canonical model.

Alternative methods as in [28] transfer grasp poses by
segmenting the objects in primitive shapes according to
their RGB-D appearance. Because this method is based on
templates primitives, it is not able to handle occlusions
efficiently. In [29] and in [30], grasp poses are transferred
using the same contact warp method which minimizes the
distance between assigned correspondences. However, both
approaches require a fully observed object and focus only
on the final result of grasping, namely on grasp poses, while
our approach addresses the process of grasping.

III. PROBLEM STATEMENT

We propose a new approach for transferring grasping skills
based on a novel method for non-rigid registration. This
method incorporates category-level information by learning
a shape space of the category. By incorporating this informa-
tion into the registration, we can avoid unlikely shapes and
focus on deformations actually observed within the class.
Thus, the resulting grasping motion is able to tolerate the
noise and occlusions typical of data measured by 3D sensors.
Furthermore, the generated space can be used to create novel
instances and to interpolate and extrapolate between previous
ones.

Our method is divided into two phases: a learning phase
and an inference phase (Fig. 2 and 3). In the learning phase,
the objective is to create a class-specific linear model of
the transformations that a class of objects can undergo. We
do this by first selecting a single model to be a canonical
instance of the class, and then we find the transformations
relating this instance to all other instances of the class
using Coherent Point Drift (CPD) [13]. We then find a
linear subspace of these transformations, which becomes our
transformation model for the class. In the inference phase,
the objective is: given a newly observed instance, search this
subspace of transformations to find the transformation which
best relates the canonical shape to the observed instance.
Grasping information from the canonical model is also
transformed to the observed instance and used to generate
the grasping motion of the robot.

The transformations are represented by a dense deforma-
tion field plus a single rigid transformation; the latter is
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Fig. 2: Learning of the latent space. First, the deformations Wi between each instance Ti and the canonical model C are calculated using CPD. These
deformations are then expressed as column vectors wi and assembled into the design matrix Y. Using PCA-EM, the principal components which constitute
the latent shape space are extracted.

included to account for small global misalignments. This
allows points defined in the space of the canonical shape
to be transformed into the space of an observed instance.
These points do not need to be known a priori for the learning
phase and can be added at any time after the registration has
completed.

The main contributions of this paper are:

1) a novel learned non-rigid registration method that finds
a low-dimensional space of deformation fields; this
method can be used to interpolate and extrapolate
between instances of a class of objects to create novel
instances and

2) the application of this non-rigid registration method to
transfer grasping skills.

IV. COHERENT POINT DRIFT

We briefly review the Coherent Point Drift (CPD) [13]
method on which our non-rigid registration is based.

Given two point sets, a template set S[t] = (s
[t]
1 , ..., s

[t]
M )T

and a reference point set S[r] = (s
[r]
1 , ..., s

[r]
N )T , CPD tries

to estimate a deformation field mapping the points in S[t] to
S[r]. The points in S[t] are considered centroids of a Gaussian
Mixture Model (GMM) from which the points in S[r] are
drawn. CPD seeks to maximize the likelihood of the GMM
while imposing limitations on the motion of the centroids.
CPD imposes a smoothness constraint on the deformation of
the points in the form of motion coherence, which is based
on Motion Coherence Theory [31]. The idea is that points
near each other should move coherently and have a similar
motion to their neighbors. Maximizing the likelihood of the
GMM is equivalent to minimizing the energy function:

E(S[t],ψ) = −
N∑

n=1

log
M∑

m=1

e−
1

2σ2
‖s[r]n −T (s[t]m ,ψ)‖2+

λ

2
φ(S[t])

(1)

where T (s
[t]
m ,ψ) is a parametrized transformation from the

template point set to the reference set. The first term of Eq.
(1) penalizes the distance between points after applying the
transformation T , and the second term is a regularization
term which enforces motion coherence.

For the non-rigid case, the transformation T is defined as
the initial position plus a displacement function v:

T (S[t], v) = S[t] + v(S[t]), (2)

where v is defined for any set of D-dimensional points
ZN×D as:

v(Z) = G(S[t],Z)W. (3)

G(S[t],Z) is a Gaussian kernel matrix which is defined
element-wise as:

gij = G(s
[t]
i , zj) = exp

− 1
2β2

∥∥∥s[t]i −zj
∥∥∥
2

, (4)

WM×D is a matrix of kernel weights, and β is a parameter
that controls the strength of interaction between points. An
additional interpretation of W is as a set of D-dimensional
deformation vectors, each associated with one of the M
points of S[t]. For convenience in the notation, GM×M
will be denoted G(S[t],S[t]). Note that G(·, ·) can simply
be computed by Eq. (4), but the matrix W needs to be
estimated.

CPD uses an Expectation Maximization (EM) algorithm
derived from the one used in Gaussian Mixture Models [32]
to minimize Eq. (1). In the E-step, the posterior probabilities
matrix P is estimated using the previous parameter values.
To add robustness to outliers, an additional uniform proba-
bility distribution is added to the mixture model. This matrix
P is defined element-wise as:

pmn =
e−

1
2σ2
‖s[r]n −(s[t]m+G(m,·)W)‖2

∑M
m=1 e

− 1
2σ2

∥∥∥s[r]n −(s
[t]
m+G(k,·)W)

∥∥∥
2

+ ω
1−ω

(2πσ2)
D
2

N
(5)



where ω reflects the assumption on the amount of noise.
In the M-step, the matrix W is estimated by solving the

equation:

(G + λσ2d(P1)−1)W = d(P1)−1PS[r] − S[t] (6)

where 1 represents a column vector of ones and d(·)−1 is
the inverse diagonal matrix.

In our method, we use the canonical shape C for the
deforming template shape S[t] and each training example Ti

as the reference point set S[r]. Hence, the transformations Ti
are defined as

Ti(C,Wi) = C + GWi (7)

where Wi is the W matrix computed by taking training
example Ti as the reference point set S[r].

V. METHOD

Our learning-based approach has an initial training phase
in which the latent space for a class of objects is built.
With the latent space of the object class, inference can be
performed to find a transformation which relates one of the
shapes from the class called the canonical shape to fully
or partially-observed novel instances. The transformation
is represented by a dense deformation field plus a single
rigid transformation. Finally, we transform all the grasping
information to the new instance.

A. Categories and Shape Representation

We define a category or class as a set of objects which
share the same topology and a similar extrinsic shape. A
category is composed of a set of training sample shapes and
a canonical shape C that will be deformed to fit the shape
of the training and observed samples. To represent a shape,
we use point clouds, which can be generated from meshes
by ray-casting from several viewpoints on a tessellated
sphere and then down-sampling with a voxel grid filter. The
canonical shape can be chosen by heuristics or chosen as
the shape with the lowest reconstruction energy after finding
the deformation field of all other training examples. Fig. 4
shows both the mesh and the resulting uniformly-sampled
point clouds of object samples of two different categories.

Each class must specify a canonical pose and reference
frame, which are essential for initial alignment. For example:
for Mugs, we can align all instances such that their top is
open upward with all the handles pointing towards the right.

B. Low-Dimensional Deformation Field Manifold

Once we have a set of training examples and a canonical
shape, we need to find the deformations from the canonical
shape to all other training shapes. Here we make use of the
Coherent Point Drift method [13].

CPD provides a dense deformation field, allowing us to
find deformation vectors for novel points, even those added
after the field is created, which in turn allows us to apply
the method for transferring grasping skills. Additionally,
CPD allows us to create a feature vector representing the

Optimize Energy 
Function

Inferred Shape

Canonical Model

Novel Instance

Latent Space

Fig. 3: The canonical shape (red) is matched against a partially-occluded
target shape (blue) by optimizing Eq. (12) in terms of the latent parameters
plus a rigid transformation. The resulting shape is shown in green on the
right.

deformation field. Importantly, this vector has the same
length for all training examples and elements in the vector
correspond with the same elements in another. This will
allow us to construct a latent space in later steps.

From Eq. (7), we see that the deformation field function
is defined by the matrices G and W. Moreover, from Eq.
(4) we see that G is a function only of the canonical shape
and remains constant for all training examples. Thus, the
entire uniqueness of the deformation field for each training
example is captured by the matrix W.

For each training example Ti, we take the matrix Wi

from its deformation field and convert it into a row vector
yi ∈ Rp=M×D, which becomes the feature descriptor of
that deformation field. The vectors are then normalized
resulting in zero-mean and unit-variance vectors which are
then assembled into a design matrix Y. Finally, we apply
Principle Component Analysis (PCA) on this matrix to find
a lower-dimensional manifold of deformation fields for this
class.

PCA finds a matrix Lp×q of principle components that can
be used to estimate a matrix of n observation vectors Ŷn×p
given a small set of q latent variables, i.e., q << p:

Ŷ = XLT . (8)

For a new normalized set of observations Yo, the latent
variables can be found by:

X = YoL. (9)

We find the matrix L using the PCA Expectation Maxi-
mization (PCA-EM) algorithm [33]. We choose this method
over analytical algorithms due to its superior performance
in situations with high dimensions and scarce data and also
because of its greater numerical stability.

Much like with CPD, we alternate between an E- and M-
step. The E-step is given by:

X = YLT (LLT )−1 (10)

whereas the M-step is defined by:

L = (XTX)−1XTY. (11)



Fig. 4: Original meshes and the uniformed sampled point clouds of instances of the Mug and Drill categories. The canonical models are colored red.

This method is shown to converge to a local minimum
using standard EM convergence proofs [34]. Additionally,
it has been shown that the only stable local extremum is
the global maximum [35], [36], meaning the algorithm will
always converge to the correct result with enough iterations.

Using Eq. (9), a deformation field can now be described by
only q latent parameters. Similarly, any point x in the latent
space can be converted into a deformation field transforma-
tion by first applying Eq. (8) and converting the result into
a WM×D matrix after the respective denormalization. Thus,
moving through the q-dimensional space linearly interpolates
between the deformation fields.

The matrix L and the canonical shape C together represent
the transformation model for a class. Figure 2 gives an
overview of the training phase which is also summarized
in Algorithm 1.

C. Shape Inference for Novel Instances

With the transformation model, we can now start regis-
tering the canonical shape to novel instances in order to
estimate the underlying transformation. The parameters of
the transformation are given by the q parameters of the
latent vector x plus an additional seven parameters of a
rigid transformation θ. The rigid transformation is meant
to account for minor misalignments in position and rotation
between the target shape and the canonical shape at the
global level.

We concurrently optimize for shape and pose using gradi-
ent descent. We expect local minima, especially with regard

Algorithm 1 Building the latent space for a Category
Input: A set of training shapes E in their canonical pose
and reference frame

1: Select a canonical shape C via heuristic or pick the one
with the lower reconstruction energy.

2: Estimate the deformation fields between the canonical
shape and the other training examples using CPD.

3: Concatenate the resulting set of W matrices from the
deformation fields into a design matrix Y.

4: Perform PCA on the design matrix Y to compute the
latent space of deformation fields.

Output: A canonical shape C and a latent space of defor-
mation fields represented by L.

to pose, therefore our method, as CPD and ICP, requires an
initial coarse alignment of the observed shape. We want to
find an aligned dense deformation field which when applied
to the canonical shape C, minimizes the distance between
corresponding points in the observed shape O. Specifically,
we want to minimize the energy function:

E(x,θ) = −
M∑

m=1

log
N∑

n=1

e
1

2σ2
‖On−Θ(Tm(Cm,Wm(x)),θ)‖2 ,

(12)
where the function Θ applies the rigid transformation given
θ parameters.

When the minimum is found, we can transform any point
or set of points into the observed space by applying the
deformation field using Eq. (3) and Eq. (2) and then applying
the rigid transformation Θ. Algorithm 2 summarizes the
inference process.

D. Transferring Grasping Skills

From experiences with an anthropomorphic robotic hand,
namely the multi-fingered Schunk hand [37], we observed
that a functional grasping cannot be described only by the
final joint configuration of the entire system (manipulator
plus hand). During the motion, the hand can make use of
geometrical and frictional constraints to increase the chances
of a successful grasping. For instance, for grasping drills, we
can first make a lateral contact with the palm followed by a
contact of the thumb with the rear part of tool, creating static
frictional forces that may help during the grasp. Therefore,
we use the term grasping when we refer to the complete
action and the term grasp for the result of this action.

We represent a grasping action as a set of parametrized
motion primitives. The parameters of the motion primitives
are poses expressed in the same coordinate system of the
shape of the object. These poses need to be defined only for
the canonical model. For new instances, the poses are found
by warping the poses of the canonical model to the instance.
Because the warping process can violate the orthogonality of
the orientation, we orthonormalize the warped quaternions.
Additional parameters of the motion primitives such as
velocities and accelerations can also be derived from the
warped poses.



Algorithm 2 Shape Inference for a Novel Instance
Input: Transformation model (C, L) and observed shape O

1: Compute matrix G = G(C,C) (Eq. 4).
2: Use gradient descent to estimate the parameters of the

underlying transformation (x and θ) until the termination
criteria is met. To calculate the value of the energy
function, in each iteration:

- Using the current values of x and θ:
1) Use Eq. (8) to create vector Ŷ and convert it into

matrix W.
2) Use Eq. (3) and Eq. (2) to deform C.
3) Apply the rigid transformation Θ to the deformed

C.
Output: Non-rigid transformation given by deformation field
description W and rigid transform θ.

VI. EXPERIMENTAL RESULTS

We tested our method on two categories: Mugs and
Drills. We obtained the models from two online CAD
databases: GrabCad1 and the 3DWarehouse2. The meshes
were converted into point clouds by ray-casting from several
viewpoints on a tessellated sphere and down-sampling with
a voxel grid filter. We trained the Mug and Drill models
with their canonical shape and additional 21 and 9 samples,
respectively. The meshes of some of the samples together
with the uniformly sampled point clouds are shown in Fig. 4.

We evaluated the robustness of our method to noise,
misalignment, and occlusion and compared our results
against results given by CPD. Noise was added to each
point by randomly sampling a point from a normal dis-
tribution and scaling it by a noise factor. Misalignment
was generated by adding a rigid transformation to the ob-
served shape. For the translation, we uniformly sampled
a three-dimensional unit vector and multiplied it by the
following factors: [0.01, 0.02, 0.03, 0.04, 0.05]. For the ori-
entation, a three-dimensional unit rotation axis was uni-
formly sampled and combined with the following angles:
[π/4, π/8, 3π/16, π/4, 3π/8], making use of the axis-angle
representation. Each test was run on a full view of the object
and on six different partial views of the object. To obtain
the partial views, we used ray-casting on a single view of a
tessellated sphere.

In all experiments, we parametrized CPD with the follow-
ing values β = 1 and λ = 3. For creating the shape space,
the number of latent variables was set to capture at least 95%
of the variance of each class, and the class canonical shapes
were selected by experts.

Fig 5 shows, for both categories, how the canonical shape
is deformed to a single view of an observed instance. Note
that our method is able to reconstruct occluded parts, as for
example, the handles of the mugs.

For the evaluation, we take the noiseless fully-observed

1https://grabcad.com/library
2https://3dwarehouse.sketchup.com/

Fig. 5: Given a partial view of the object (leftmost), the canonical objects
are deformed for the Mug and Drill categories. The resulting point cloud is
shown rightmost.

shape as the ground truth and the following error function:

E(D,O∗) =
1

N

N∑

n=1

min
m

(
‖O∗n −Dm‖2

)
(13)

where D is the transformed canonical shape and O∗ is the
ground truth shape. To compute the final error, we average
the errors resulting from each partial view and from each
test sample.

The results of our experiments are plotted in Fig. 7. We
use the abbreviation CLS (Categorical Latent Space) for
referring to our method. When a shape is fully visible with
or without noise, CPD outperforms our method. This is
rather to be expected as CPD is the source of training data
from which we build our registration model. On the other
hand, when the observed shape is misaligned, our method
outperforms CPD, which can be explained by the additional
rigid transformation component of our method. Moreover,
when the shape becomes partially occluded, the method also
outperforms CPD thanks to the topological information that
lies in the latent space, which is not available in CPD.

For testing the grasping transfer, we conducted a set of
experiments using the five-fingered Schunk hand, which has
a total of 20 Degrees of Freedom (DoF) from which 9
are fully actuated. The experiments were carried out in the
Gazebo simulation environment. The tests were performed
on the Drill category. Due to the reduced number of meshes,
we used cross-validation and created five transformation
models leaving two testing samples for each transformation
model. A trial was defined as successful if after the execution

Fig. 6: Registration of a partially occluded point cloud of an object coming
from real sensory data. The input point cloud is at the top leftmost while
the inferred shape is at the bottom rightmost.
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Fig. 7: A comparison of our method (CLS dotted blue line) against CPD (red line). The first row of plots corresponds to the drill category while the
second row refers to the cup category. On each case, the first two plots show the results on fully observed shapes, while the last two, on partially observed
shapes. Our method outperforms CPD on partial views of objects and misaligned fully observed shapes.

of the motion, the drill was held by the robotic hand. We got
a success rate of 0.8 on grasping the drills.

Failure cases occurred mainly for one reason, i.e., the
size of the testing object was too small compared to the
canonical shape. This indicated that the transformation model
was not general enough, mainly due to the reduced number
of training samples. The small size of the objects also caused
collisions between the fingers at the moment of grasping the
handle. However, we expect to tackle this problem in the
future by inferring information from the shape such as the
number of fingers required for grasping.

We tested our approach with real sensory data coming
from a Kinect v2 sensor [38]. We trained a single latent space
model with 9 training samples and the canonical model.
Our method was able to generate plausible category-alike
shapes and grasping poses in each of three different trials.
The inference in average took 6 s on a Corei7 CPU 2.6 GHz
with 16GB RAM. This demonstrates that our method can
be used on-board in real robotic platforms. The result of the
registration is presented in Fig. 6.

VII. CONCLUSION

We presented a novel approach for transferring grasping
skills based on a latent space non-rigid registration method,
which is able to handle fully observed and partially observed
shapes. We demonstrated its robustness especially to noise
and occlusion. We evaluated our method on two sets of
shapes and found that while the method performed slightly
worse than conventional CPD on noiseless, fully observed
shapes, when shapes were partially occluded, our method

was much more able to recover the true underlying shape
and reported lower average error. Successful application of
the non-rigid registration for transferring grasping skills was
also demonstrated both with synthetic and real sensory data.

In the future, we would like to extend our approach to
more complex objects that require a part-based modeling
approach.
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Efficient Stochastic Multicriteria Arm Trajectory Optimization

Dmytro Pavlichenko and Sven Behnke

Abstract— Performing manipulation with robotic arms re-
quires a method for planning trajectories that takes multiple
factors into account: collisions, joint limits, orientation con-
straints, torques, and duration of a trajectory. We present an
approach to efficiently optimize arm trajectories with respect
to multiple criteria. Our work extends Stochastic Trajectory
Optimization for Motion Planning (STOMP). We optimize
trajectory duration by including velocity into the optimization.
We propose an efficient cost function with normalized compo-
nents, which allows prioritizing components depending on user-
specified requirements. Optimization is done in two stages: first
with a partial cost function and in the second stage with full
costs. We compare our method to state-of-the art methods. In
addition, we perform experiments on real robots: centaur-like
robot Momaro and an industrial manipulator.

I. INTRODUCTION

Autonomous robots are required to interact with unstruc-
tured environments. This introduces a need for manipulation
trajectory planning. A feasible trajectory is expected to
satisfy multiple criteria: being collision-free, being within
joint limits, and being smooth. In addition, minimization
of torques may allow to operate longer with limited power
supply and to operate heavy objects with more safety for the
motors. Minimized duration of a trajectory allows finishing
a task faster. In addition, orientation constraints are often
required when manipulating orientation-dependent objects.
Planning a trajectory considering all these factors is a chal-
lenging task.

In this paper, we address these challenges by extending
a popular optimization method: Stochastic Trajectory Opti-
mization for Motion Planning (STOMP) [1]. In the original
STOMP, the duration of the trajectory is predefined and fixed.
We propose a way to optimize duration as well. We further
introduce a novel cost computation policy that allows to take
full control over the computational effort, which lowers the
runtime. We propose a cost function with five components:
collisions, joint limits, orientation constraints, joint torque,
and duration minimization. Each cost component is normal-
ized to have values in the interval [0, 1]. By introducing
an importance weight for each component, it is possible to
set priorities, which allows obtaining qualitatively different
trajectories according to the user preferences. Optimization
is performed in two phases to reduce computations: with
simplified and full cost functions (Fig. 1).

We evaluate our approach by performing experiments of
different difficulty levels in simulation in comparison with
three state-of-the-art planning methods. We demonstrate the
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Fig. 1. Two-phased optimization utilized in our approach. Red: initial
trajectory, going through the obstacle; Blue: result of the first phase –
collision-free trajectory; Green: result of the second phase – trajectory
optimized with full costs. Points on trajectories correspond to collision
checks. We utilize adaptive collision checking density: closer to the obstacles
collision checking is performed with increased density.

effects of optimization of different cost components. Finally,
we perform experiments with real robots to demonstrate that
our approach can be applied to real-world problems.

II. RELATED WORK

Manipulation planning has been investigated by many
researchers, as it is essential for a vast range of autonomous
manipulation robots. Sampling-based methods [2], [3] are
popular for addressing planning problems. One example
are Rapidly-Exploring Random Trees (RRTs) [4]. James et
al. [5] utilize RRTs for planning feasible trajectories for a
robotic arm. This method produces non-smooth trajectories
which are far from being optimal. Thus, a postprocessing
step is needed.

RRTs find paths from a start configuration to any con-
figuration in the search space to find an optimal solution.
However, this approach introduces many unnecessary com-
putations. Gammell et al. [6] represent a set of perspective
solutions as a prolate hyperspheroid. Unnecessary exhaustive
search across the whole search space is avoided by this
technique.

Batch Informed Trees (BIT*) [7] combine incremental
graph search and sampling-based techniques. The initial
ellipsoid subset of samples is incrementally expanded with
new batches of configurations. This allows exploring a search
space and finding an optimal solution. BIT* utilizes a heuris-
tic in order to bias the search towards potential improvement
of the solution.

The Fast Marching Tree algorithm (FMT*) [8] is a proba-
bilistic sampling-based planning method. The approach is a
combination of single-query and multiple-query algorithms.
Lazy dynamic programming recursion is utilized in order to



grow a tree of trajectories. This technique is aimed to reduce
the number of collision checks. The method was proven to
be asymptotically optimal.

Bidirectional Informed RRT* (BI2RRT*) [9] is an exten-
sion of Informed RRT*. Bi-directional search is utilized in
order to find an optimal solution faster. A greedy connect
heuristic is used in order to find an initial feasible solution
quickly. The method enables the use of task-specific con-
straints through first-order retraction [10].

Another work based on RRT∗ is Ball Tree + RRT∗

(BT+RRT∗) [11]. The approach combines the Ball Tree
algorithm with RRT∗. The Ball Tree algorithm maintains
a tree in similar to RRT manner. However, each vertex is
represented by a ball in the configuration space instead of a
point. This allows obtaining solutions using much sparser
trees. BT+RRT∗ utilizes a memoization technique, which
allows to reduce the amount of collision checks. The method
achieved lower runtime than RRT and RRT∗. However, these
methods only take into account a geometry of a robot. In [12]
a method for acceleration-limited planning, based on RRT is
presented. Non-iterative steering method is defined, which
allows to take into account velocities and accelerations and
find feasible solutions fast. The method is capable of solving
problems with non-zero initial and/or goal velocities.

Optimization-based methods are used in order to obtain
smooth trajectories which are optimized with respect to the
required criteria. In Covariant Hamiltonian Optimization for
Motion Planning (CHOMP) [13], a covariant gradient tech-
nique is used, which requires a gradient of the cost function.
The idea is similar to the elastic bands planning [14], where
the trajectory is pushed away from the obstacles by repelling
forces. CHOMP quickly converges to the locally optimal
trajectory. A signed distance field is used as an environment
representation, which allows obtaining gradients even for
non-collision-free parts of the trajectory. However, as many
gradient-based methods, CHOMP suffers from local minima.

T-CHOMP [15] is an extension of CHOMP. The config-
uration space is extended by one dimension for time. This
allows to optimize in space-time. The idea behind this work
is similar to ours, as we add one dimension representing
time as well. The authors mention that the implementation
is very sensitive to parameters and without fine tuning it may
output a “collision-free” solution where the robot slowly goes
through the obstacles. We avoid this effect by designing a
cost function which penalizes such situations.

STOMP [1] adopted the environment representation from
CHOMP. However, instead of using the gradient of the cost
function, it uses a sampling technique for cost minimization.
This allows to use non-differentiable cost functions and
decreases the risk of being stuck in a local minimum.

Local multiresolution for STOMP was proposed by Stef-
fens et al. [16]. The initial part of the trajectory is planned
with a high resolution and parts of the trajectory which
are located further away in time are planned with lower
resolution. This allows to decrease the runtime and allows
to apply the method in dynamic environments. However, the
duration of the trajectory is fixed as in the original method.

Fig. 2. Top: trajectory of original STOMP with a large number of
keyframes. Bottom: small number of keyframes in our modification; transi-
tions between them are evaluated.

III. METHOD

Our method is based on STOMP [1], which demonstrated
a good performance in optimizing high-dimensional trajec-
tories with respect to multiple criteria. In this section we
discuss our extension of this method.

A. Original STOMP

In STOMP [1], a planning task is considered as an opti-
mization problem. The objective is to find a trajectory which
has the minimal cost according to a given cost function.

The input of STOMP is an initial trajectory Θ which con-
sists of N keyframes θi ∈ RJ in a joint space with J joints.
The keyframes are equally spaced in time and discretize a
predefined fixed duration T . A naı̈ve initial trajectory that
is often used is the linear interpolation between the given
start and goal configurations θstart and θgoal. During the
optimization process, start and goal configurations remain
unchanged. STOMP outputs an optimized trajectory. The
optimization problem is formulated as:

min
Θ̃

E
[ N∑

i=1

q(θ̃i) +
1

2
Θ̃>RΘ̃

]
, (1)

where Θ̃ = N (Θ,Σ) is a noisy joint parameter vector, given
that Θ is the mean and Σ is the covariance. q(θ̃i) is a state
cost function which includes: obstacle costs, torque costs,
and constraint costs. Each state θ̃i of the trajectory Θ̃ is
evaluated using this cost function. The term Θ̃>RΘ̃ is the
sum of squared accelerations along the trajectory, which are
computed using a finite differencing matrix.

B. Proposed Cost Function

In contrast to the original STOMP, we propose to define
the state costs not for individual keyframes, but for tran-
sitions between them (Fig. 2). Given a trajectory Θ which
consists of N keyframes, the state costs are computed as:

q(Θ) =

N−1∑
i=0

q(θi,θi+1), (2)

where q(θi,θi+1) is a cost for the transition from the config-
uration θi to θi+1. This extended cost computation allows for
taking control over the number of cost computations. Given
a pair of keyframes, it is possible to determine the number
of intermediate configurations which have to be checked in
order to cover the transition from θi to θi+1 with a required



precision. This ensures that only necessary computations
are made. This model allows to plan trajectories with a
substantially smaller number of keyframes, e.g. 10-20. We
keep the second term of the original cost function (1) of
STOMP. The optimization problem now is defined as:

min
Θ̃

E
[N−1∑

i=0

q(θ̃i, θ̃i+1) + γΘ̃>RΘ̃

]
, (3)

where γ ∈ [0, 1] is the importance weight of the control
costs. We define the transition cost function:

q(θi,θi+1) =qo(θi,θi+1) + ql(θi,θi+1) + qc(θi,θi+1)

+qd(θi,θi+1) + qt(θi,θi+1),
(4)

where qo is an obstacle cost, which penalizes collisions
and being close to the obstacles, ql is a joint limit cost
which penalizes violations of joint limits, qc is a constraint
cost which penalizes violation of any custom constraints of
the end-effector position/orientation, qd is a duration cost,
which penalizes long durations and qt is a torque cost
which penalizes high torques. Each cost component function
qj(θi,θi+1) is designed so that:

qj(θi,θi+1) =

{
λj · qjv (θi,θi+1), if θi → θi+1 is valid
qjnv

(θi,θi+1), otherwise
,

(5)
where qjv (θi,θi+1) ∈ [0, 1] is a cost for a valid transition,
defined for the cost component qj . The term θi → θi+1

corresponds to a transition from the configuration θi to θi+1.
A transition from θi to θi+1 is considered to be valid with
respect to the cost component qj if there are no critical
violations of the constraints defined for qj . For example, a
collision with an obstacle is a critical violation with respect
to the obstacle cost function. The function qjnv (θi,θi+1)�
1 defines a cost for non-valid transitions. This is done in
order to prevent the algorithm from decreasing costs for the
valid transitions in order to compensate high costs of the
invalid transition. At the same time, when the transition is
valid, the cost component is scaled within the interval [0, 1],
which allows to utilize a system of weights λj ∈ [0, 1] in
order to set a relative importance of the cost components.
This allows for defining properties for optimizing cost com-
ponents, which may differ for each particular situation.

1) Obstacle costs: Obstacle costs penalize collisions with
the environment, self collisions and being close to the
obstacles. We adopt a signed Euclidean Distance Transform
(EDT) [17] representation for the environment as in the
original STOMP. This representation requires an assumption
that the environment is static during the optimization and
motion execution. We utilize this assumption, and divide the
robot body into static and dynamic parts. The static part is
not involved in the planned movement, e.g., the robot base.
It is represented with another instance of EDT, and must be
precomputed only once, while the EDT for the environment
must be precomputed before each new planning task. The
dynamic part is represented with a set of spheres, as in the
original STOMP. They are checked for collisions with both

Fig. 3. In order to evaluate a transition, a discretization precision p is
determined. Each of obtained intermediate configurations is evaluated with
a cost function. The maximum cost is chosen to be the cost for the transition.

distance fields and against each other. In order to eliminate
unnecessary checks between spheres, they are partitioned
into collision groups. Pairs of collision groups to be checked
are stored in an Allowed Collision Matrix (ACM).

To estimate the obstacle cost qo(θi,θi+1) for the transi-
tion from configuration θi to θi+1, we determine a set of
equally spaced intermediate configurations Ω. To find |Ω|,
a link which moves for the longest Euclidean distance d is
determined using forward kinematics. In order to determine
the movement distance of the link, a specific point is assigned
for each link for which the distance is measured. We define
this point to be in the place where the successor link is
connected. Given a required precision p, |Ω| is computed
as |Ω| = d

p (Fig. 3).
In situations where the obstacles are far away, a low

precision is used, while in situations when the obstacles
are close, a high precision is used. In order to estimate
the precision p for a particular transition, we estimate
the distance dobst to the closest obstacle as: dobst =
min(dist(θi), dist(θmid), dist(θi+1)), where dist(θi) is a
function which estimates the minimum distance from the
robot dynamic part to the obstacles for a given configuration
θi and θmid is the middle configuration between θi and
θi+1. Given a finest allowed precision pmax, we compute
the precision p as:

p = max
(dobst

2
, pmax

)
. (6)

Given a set Ω which consists of |Ω| uniformly spaced
intermediate configurations obtained by linear interpolation
from θi to θi+1, the obstacle cost for the transition is:

qo(θi,θi+1) = max
(
qo(θj)|∀θj ∈ Ω, qo(θi+1)

)
, (7)

where qo(θi) is the obstacle cost which determines how
feasible a particular configuration θi is:

qo(θi) =


Co · |dmin − dobst|, if dobst ≤ dmin

0, if dobst ≥ dmax

λo ·
(
1− dobst−dmin

dmax−dmin

)
, otherwise

, (8)

where λo ∈ [0, 1] is the importance weight for the obstacle
costs, dmin is a minimum acceptable distance to the obstacles
and dmax is a maximum distance to the obstacles which the
algorithm should take into consideration. dobst is the distance
to the nearest obstacle. Co � 1 is a predefined constant
which ensures that unfeasible configurations have very high
costs. In case a configuration θi is feasible and the distance
to the nearest obstacle falls in the interval (dmin, dmax], the
cost function is scaled within the interval [0, 1].



2) Joint limit costs: These costs penalize violations of
joint limits. As any other cost component in our cost func-
tion, joint limit costs estimate the cost for a given transition
from a configuration θi to θi+1. The joint limit costs ql are
formulated as:

ql(θi,θi+1) = max
(
ql(θj)|∀θj ∈ Ω, ql(θi+1)

)
, (9)

where Ω is a set of intermediate configurations for the
transition from θi to θi+1. To define |Ω|, a constant precision
pl is used: |Ω| = d

pl
, where d is a distance determined in the

obstacle cost computation. Given upper and lower bounds on
joint positions θmax and θmin and a configuration θk, we
compute a maximum deviation ∆θk from the limits. If there
is a violation of a joint limit, ∆θk has a negative value, or is
zero. Otherwise, ∆θk has a positive value and represents the
smallest deviation within the limit. Joint limit cost is defined
as:

ql(θk) =


Cl · (|∆θk|+ 1) if ∆θk ≤ 0
1
ε2 ∆θ2

k − 2
ε∆θk + 1, if 0 < ∆θk < ε

0, otherwise
, (10)

where Cl � 1 is a predefined constant. The term ε is a
magnitude of a considered safety margin. We do not include
a corresponding importance weight λl, as this cost is of
significant importance in any situation. Positions which are
close to the actuator limits may cause harm to the actuators,
that is why we employ a smooth cost to penalize positions
which are close to the joint limits. This cost function is based
on a quadratic function, such that the largest considered
deviation of ε leads to the cost value close to 0, meanwhile
the deviation close to 0 leads to the cost value close to 1. In
our work we use the value ε = 0.1 rad.

3) Custom constraint costs: This cost component is sim-
ilar to the joint limit costs and preserves any custom con-
straints on the end-effector position/orientation. We apply
the same procedure for the constraint costs qc, as for joint
limit costs: Given a set of intermediate configurations Ω,
we compute the cost qc for each of them, and choose the
maximum cost. We record the magnitude of the largest
deviation from constraints ∆θk as described for the joint
costs. Custom constraint costs are defined as follows:

qc(θk) =

{
Cc · (|∆θk|+ 1) if ∆θk ≤ 0

0, otherwise
, (11)

where Cc � 1 is a predefined constant which penalizes
any violations of custom constraints. We do not include a
corresponding importance weight λc, as this cost has either
a very large value, which penalizes violations, or is 0.

4) Duration costs: Duration costs penalize long durations
and, hence, allow to minimize a duration of a trajectory.
In order to have a mechanism to influence the duration,
the velocity of the joint with longest path is added to the
configuration space. We make the assumption that a duration
necessary to execute a trajectory is bounded by the duration
necessary to execute the trajectory of the joint with the
longest path. So, before evaluating a trajectory, the joint with

the longest path is determined, and the duration estimation
is performed with respect to this joint. By restricting the
velocity information to a single joint, we avoid doubling the
dimensionality of the optimization problem. The extended
configuration now consists of a joint vector and a value v
for the velocity: θ̂i = 〈θi, v〉.

We prevent the velocity from exceeding the limits 0 <
v < vmax when generating noisy trajectories by clipping
it to the limit. Given the desired velocity for the transition
from θ̂i to θ̂i+1, it is possible to estimate the duration t
for this transition. Before the optimization process is started,
we estimate a maximum acceptable duration tmax for one
transition in order to scale the duration costs from 0 to 1.
We define tmax as: tmax = ttotal

N−1 , where N is the number of
keyframes and ttotal is the duration of the initial trajectory
executed with low velocity.

In order to provide an additional level of safety for
optimized trajectories, we introduce an additional constraint
on the velocity which depends on distance to the obstacles.
The closer the robot is to an obstacle, the lower is the allowed
velocity. This constraint is represented as a set V of tuples
of a form 〈v, d〉, where v is the maximum allowed velocity
when the distance to the nearest obstacle is less than d. We
determine the duration costs qd(θ̂i, θ̂i+1) as:

qd =


Cv, if ∃〈v, d〉 ∈ V : v < vθ̂i

∧ d > dθ̂i

λd · t
tmax

, if t ≤ tmax

Cd · (t+ 1), otherwise
,

(12)
where λd ∈ [0, 1] is the importance weight for the duration
costs, Cd � 1 and Cv � 1 are predefined constants, which
penalize exceeding of the duration limit and obstacle-velocity
constraints. The terms vθ̂i

and dθ̂i
are the velocity and the

distance to the closest obstacle, respectively, measured for a
set of intermediate configurations Ω between θ̂i and θ̂i+1,
which were defined in the obstacle cost computation.

5) Torque costs: The purpose of this cost component
is to penalize high torques and ensure that torque limits
are not exceeded. In order to evaluate torque costs of the
transition from θ̂i to θ̂i+1, we find a set Ω̂ of intermediate
configurations which are uniformly distributed along the
transition with given constant precision p. We define the
torque costs for the transition as:

qt(θ̂i, θ̂i+1) = max
(
qt(θ̂j)|∀θ̂j ∈ Ω̂, qt(θ̂i+1)

)
. (13)

The torques τ affecting motors are expressed as a function
of joint positions and their derivatives: τ = f(θ, θ̇, θ̈). As we
have the velocity, it is possible to estimate the acceleration
as well. We use the RBDL library [18] to compute torques.
The torque costs of the configuration θ̂i are:

qt(θ̂i) =


Ct · (max

j∈J
(τj − τmax) + 1), if τj > τmax

λt ·
∑

J τj
J · τmax

, otherwise
,

(14)
where λt ∈ [0, 1] is the importance weight of the torque
cost, τmax is a maximum allowed torque for a single motor,



and Ct � 1 is a predefined constant. In the first row of
the equation above, we penalize any exceeding of the torque
limit by large cost � 1. In the second row, we produce a
cost ∈ [0, 1] which penalizes high torques.

C. Optimization Process

In the previous subsections, the multicriteria cost function
was discussed. However, this complex function leads to a
complex solution space with many disjoint local minima. In
this subsection, we describe how extended STOMP is applied
to find feasible trajectories more effectively.

One of the most severe barriers on the way to a feasi-
ble trajectory are obstacles. Often, the initial trajectory is
going through obstacle regions. Thus, finding a collision-
free trajectory is the first problem which must be solved.
However, our cost function consists of five components,
two of which are not relevant for this phase: duration and
torque costs. While the algorithm attempts to leave the region
of collisions, these costs are not important, as the current
solution is not feasible anyway. Using them could slow
down convergence, as the components may pull the trajectory
in different directions. Moreover, these components would
introduce additional computations.

In order to address this issue, the optimization process
is split into two consecutive phases. In the first phase, we
use a simplified cost function. It consists of: obstacle costs,
joint limit costs, and constraint costs. Optimization with the
simplified cost function continues until a valid trajectory is
found. After this, the configuration space is extended with
velocity, and the second phase of the optimization starts,
where the full cost function with five components is used.
This phase continues until a termination criterion is met.

In certain situations, the algorithm can get stuck in a
local minimum. In order to prevent failures or unnecessary
exhaustive runs in these cases, we apply the algorithm in an
iterative manner. If the algorithm cannot improve the solution
during a given number of iterations, and the current best
solution is not valid, the optimization starts from scratch.
In this case, the best solution from the previous iteration is
used as initialization. Initial noise standard deviation tends to
explore previously unseen areas and leads to discovery of a
valid solution. The maximum number of replanning attempts
M is predefined and we use the value M = 5.

This restarting approach shows better results than attempts
to solve the problem in one exhaustive run of the algorithm.
The separation of the optimization process into two parts
with simplified and full cost functions allows to decrease
the time of the optimization.

IV. EXPERIMENTS

In order to evaluate our method, we performed experi-
ments in simulation and on real robots. Our centaur-like robot
Momaro [19] was used in almost all experiments. Momaro
has two 7 DOF arms and a torso yaw joint, which allows
to enlarge the workspace. In all experiments with Momaro,
the planning is performed for 8 DOF: one 7 DOF arm and
the torso yaw. The volume of the workspace covered by the

Fig. 4. Environment for the shelf experiment. Momaro stands in front of
the shelf with three cells.

signed distance field is 2.0× 1.5× 1.5 m. The distance field
has a resolution of 1.5 cm. All start and goal configurations
used in the experiments were defined manually. A linear in-
terpolation in joint space between start and goal configuration
was used as an initial trajectory.

A. Simulation Experiments

We performed the experiments in simulation on a desktop
computer with Quad-core 4.00 GHz Intel Core i7-4790K
CPU, 32 GB of RAM, 64 bit Kubuntu 14.04 with 4.2.0-42
kernel using ROS Indigo Igloo. All evaluated algorithms ran
on a single core.

1) Shelf experiment: The purpose of this experiment is to
model an every-day task. We constructed a shelf with three
35×35×35 cm cells. The thickness of a shelf border is 3 cm.
The robot stands in front of the shelf with an arm in a neutral
position (Fig. 4). In addition to the neutral configuration,
there are three more configurations, where the hand is located
inside the first, the second and the third cell, respectively.

The experiment consists of 12 tasks which are formed
by all possible transitions between the four configurations.
Each task is performed 100 times to average out noise from
obtained measurements. In the shelf scenario, two more
series of tasks of higher difficulty were designed. The initial
set of configurations is referred to as “Easy”. The gripper was
immersed 11 cm deeper into the cells, which made the task
harder as the gripper had to travel more in the tight space
of the cells. We refer to this experiment as “Hard”. Finally,
an orientation constraint for the gripper was introduced. We
kept “Hard” configurations, but now the gripper had pitch
and roll constrained to deviate no more than ±0.2 rad from
the initial orientation. We refer to this as “Hard constrained”
task.

We performed this experiment with four algorithms: Lazy
Bi-directional KPIECE (LBKPIECE)1, which uses a dis-
cretized representation of projected state space in order to
find a solution and is a combination of [20] and [21], RRT-
Connect [5] from OMPL [22], STOMP-Industrial2, which
is a newer implementation of the original STOMP, and our
method, which is referred to as STOMP-New. We set the time

1http://ompl.kavrakilab.org/classompl_1_
1geometric_1_1LBKPIECE1.html

2https://github.com/ros-industrial/industrial_
moveit



TABLE I
COMPARISON OF SUCCESS RATE AND AVERAGE RUNTIME.

Difficulty level

Easy Hard Hard
constrained

Algorithm Success rate
runtime [s]

Success rate
runtime [s]

Success rate
runtime [s]

LBKPIECE 0.94
2.47 ± 1.08

0.93
2.46 ± 0.85

-
-

STOMP-Industrial 0.87
0.87 ± 0.86

0.76
1.47 ± 1.01

-
-

RRT-Connect 0.97
0.29 ± 0.18

0.96
0.85 ± 0.58

0.97
1.22 ± 1.04

STOMP-New 1.0
0.09 ± 0.02

1.0
0.18 ± 0.11

0.99
0.28 ± 0.21

TABLE II
COMPARISON OF AVERAGE RUNTIME FOR SIMPLIFIED AND FULL COST.

Difficulty level

Easy Hard Hard
constrained

Simplified costs 0.09 ± 0.02 0.18 ± 0.11 0.28 ± 0.21
Full costs 0.12 ± 0.04 0.23 ± 0.19 0.48 ± 0.32

Runtime growth 33% 28% 71%

limit for LBKPIECE and RRTConnect to be 5 seconds. We
set the maximum iteration number for STOMP-Industrial and
STOMP-New to be 100. At each iteration, ten trajectories
are sampled. Trajectories of STOMP-New consist of ten
keyframes and 50 keyframes for STOMP-Industrial. We
made efforts to tune the planners, so that they demonstrate
their best performance. In this experiment, we used the
simplified cost function in STOMP-New, as the compared
methods do not optimize the duration or motor torques. The
obtained average success rates and runtimes are shown in
Table I. There are no results for LBKPIECE and STOMP-
Industrial for “Hard constrained” test, as the orientation
constraints were not realized in these implementations.

One can observe that all algorithms except STOMP-
Industrial achieved a success rate close to 1.0. However,
the average runtime differs significantly. The slowest method
is LBKPIECE. The second slowest algorithm is STOMP-
Industrial, which has a noticeable improvement in runtime
in comparison with LBKPIECE. STOMP-New and RRTCon-
nect have shown the best performance, having high success
rates and low runtimes. Our method achieved three to four
times lower runtime than RRTConnect. The average time
for computation of EDT in STOMP-New was 0.033 s. The
improvement in runtime in comparison to STOMP-Industrial
was achieved by the proposed cost function, which reduces
the computations. In addition, smaller keyframe numbers
which are available for our method, contribute to the speed
up. On average 33 collision checks per trajectory were
performed by our method during this experiment.

In order to estimate a runtime growth as well as possible
success rate degradation when using full costs instead of
simplified costs, we performed the shelf experiment one more
time using full costs. During this experiment, we set all cost
importance weights to a neutral 0.5 value.

Fig. 5. Trajectories obtained with different obstacle cost importance
weights. Red: 0.0; Blue: 0.5; Green: 1.0. The larger the weight is, the larger
distance to the obstacles is kept by the robot. Black: start pose; Yellow: goal
pose.

The comparison of the obtained runtimes is shown in
Table II. The success rate remained the same, thus we do
not show it. For both “Easy” and “Hard” unconstrained
tests, the runtime grew by approximately 30%. For the test
with orientation constraints, the runtime growth reached 71%
which is explained by many disjoint local minima caused by
the constraints, which is harder to overcome. However, the
full cost function allowed to obtain trajectories with lower
durations and torques. We demonstrate the effects of these
components in the next subsections. Overall, the runtime
growth is not critical. Our method may be used in a frequent-
replanning manner for acting in dynamic environments.

2) Obstacle costs: In this experiment, we demonstrate
how different obstacle cost component importance weights
influence the obtained solutions. We took a task from the
shelf experiment and obtained solutions with three different
obstacle importance weights, shown in Fig. 5. While the
trajectory with the value of obstacle cost weight 1.0 is the
safest, as it moves the arm very far from the obstacles,
this trajectory is the longest and has the longest duration.
The trajectory with lowest obstacle weight is the fastest to
execute, but includes movements close to the obstacles.

3) Torque optimization: In order to demonstrate how
torque optimization influences the resulting trajectory, we
performed an additional experiment. The initial configuration
is a default position of the robot with bent elbow. The goal
configuration has fully extended arm and the torso is rotated.
The weight of the end-effector is being increased by 5 kg
representing a heavy object in the hand. The optimization is
performed two times: with and without torque minimization.
The obtained trajectories are depicted in Fig. 6. Without
torque minimization, all joints move uniformly towards the
goal. With torque minimization turned on, the trajectory is
different. The arm in the extended state experiences high
torques due to gravity. The optimizer avoids this effect by
keeping the arm bent and rotating the torso first. Only when
this movement is finished, the arm is extended, which results
in lower total torque.

4) Duration optimization: In this experiment, we demon-
strate the behaviour of our duration cost component. We
took a task from the shelf experiment and adjusted the goal
configuration in a way that it is located very close to the
cell border, so that in the end the robot must move close



(a) (b)

Fig. 6. Comparison of trajectories obtained with/without torque optimiza-
tion. The robot is assumed to hold 5 kg. Red: without torque optimization;
Green: with torque optimization. (a) Trajectories of the end-effector. Black:
start pose; Yellow: goal pose. With torque optimization the robot first
rotates the torso and only then extends the arm, which results in lower
torque. (b) Magnitude of the total torque. Without optimization (upper line)
the torque grows faster and reaches unnecessary high values. While with
optimization (lower line) total torque grows slower.

(a) (b)

Fig. 7. Duration optimization. In order to make the movement safer, the
optimizer maintains lower velocities in region near the obstacles. This makes
an earlier deceleration necessary, which results in a trajectory with longer
duration, but with a higher safety level. (a) The grey-scale line represents
the trajectory of the end-effector. The brighter the segment is, the larger
is the velocity during that segment. Black: start pose; Yellow: goal pose.
(b) Velocity vs time.

to the obstacle. The obtained solution is shown in Fig. 7
As the movement starts and ends in a static state, both
initial and goal velocities were set to 0 rad/s. One can see
that the algorithm attempts to reach the maximum allowed
velocity (1.0 rad/s) during the first part of the trajectory and
then maintains this velocity. However, as further movement
is done close to the obstacle, the deceleration is started in
advance and the movement is continued towards the goal
with low velocity, which makes the motion safer.

To demonstrate replanning capabilities of our method,
we performed an additional experiment. The optimization
is done two times: in the first case start and goal velocities
are 0 rad/s. In the second case, the initial velocity is 0.7 rad/s
and the goal velocity is 0 rad/s. The experiment shows that
our method can be used for replanning when the robot is
already moving. Resulting trajectories are shown in Fig. 8.
One can observe that in both cases the velocity smoothly
grows towards its maximum allowed value (1.0 rad/s). It
stays on this level and then decreases until the goal value is
reached. The trajectory which starts with 0.7 rad/s velocity
has smaller duration (2.78 s) than the trajectory which starts
with 0 rad/s (3.81 s), which is an expected result.

(a) Trajectory with both start and
goal velocities 0 rad/s.

(b) Velocity vs time for (a).

(c) Trajectory with start velocity
0.7 rad/s and goal velocity 0 rad/s.

(d) Velocity vs time for (c).

Fig. 8. Example of a duration optimization. Black: start pose; Yellow:
goal pose. The grey-scale lines represent the trajectories of the end-effector.
The brighter the segment is, the larger is the velocity. In the first case (a)
the initial and the goal velocities are 0 rad/s. In the second case (c) the
initial velocity is 0.7 rad/s. In both cases the optimizer attempts to reach
the maximum velocity and keeps it as long as possible before deceleration.
However, as in (c) the velocity is non-zero initially, there is less time spent
for acceleration, and hence, the overall duration is smaller.

(a) (b)

Fig. 9. Obstacle avoidance with a real robot. (a) Planned trajectory which
avoids the obstacle in order to reach a pre-grasp pose. (b) Momaro executing
the planned trajectory.

B. Robot Experiments

To demonstrate that our method can be applied in reality,
experiments with real robots were performed. The videos of
the experiments are available online3.

1) Momaro: We used our method to reach a pre-grasp
pose with the Momaro robot. As shown in Fig. 9, Momaro
successfully avoided an obstacle placed on the way. This
demonstration was shown live during the review meeting of
the CENTAURO4 project. Different obstacle cost importance
weights were used to avoid the obstacle with different
margins, to demonstrate planning of safe or fast trajectories.

3http://www.ais.uni-bonn.de/videos/IROS_2017_
Trajectory_Optimization

4https://www.centauro-project.eu



(a) (b)

Fig. 10. Replanning with iiwa arm. (a) Two trajectories: initial (lower
line) and replanned (upper line), which was produced when previously
unconsidered obstacle (box in the middle) interfered the initial trajectory.
(b) iiwa arm executing a replanned trajectory, avoiding the previously
unconsidered obstacle (box).

2) KUKA arm: STOMP-New was used during the Show-
case evaluation of the KittingBot project in the Euro-
pean Robotics Challenge 2 (EuRoC)5. In this challenge, the
KUKA miiwa robot was used, which consists of an iiwa ma-
nipulator on an omnidirectional mobile base. The objective
was to pick up different engine parts in different locations
across the arena. Our method was used to plan trajectories
for the iiwa arm to reach a pre-grasp pose and to deliver
a grasped object to a pre-release pose. There were three
different objects: metal engine support parts of two sizes and
engine pipes. In order to plan trajectories with these objects
during one run, rough approximations of these objects were
attached and detached from our collision model. In addition,
we performed a replanning experiment, which shows the
capability of our method to perform a quick replanning when
an obstacle interferes with the already planned trajectory. In
Fig. 10 one can see the robot executing the final trajectory,
replanned to avoid the box.

V. CONCLUSIONS

In this paper, we presented an approach for optimization of
arm trajectories with respect to multiple criteria that extends
STOMP. Trajectory duration is optimized by including a
velocity into the configuration space. We proposed a multi-
component cost function, which includes the following cost
components: collisions, joint limits, orientation constraints,
joint torque and trajectory duration. The components are
normalized and have importance weights assigned. These
weights allow to prioritize component optimization and ob-
tain trajectories with different properties. The cost function
is designed to evaluate a trajectory efficiently, keeping the
computational load as low as possible. It is easy to extend
the cost function with any additional costs as long as they
are normalized. We evaluated our method in simulation and
on real robots. Our approach demonstrated high success rate
and low runtime, making it suitable for frequent replanning
in dynamic environments.

5http://www.euroc-project.eu/index.php
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