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Executive Summary

This deliverable describes the pipeline for dual-arm autonomous manipulation for the Centauro
robot. In order to fully make use of the capabilities of the robot (two anthropomorphic arms
with 7 DOFs each) and broaden the range of tasks which can be solved, dual-arm manipulation
has to be addressed. The basic concept for the CENTAURO manipulation pipeline is presented
in Deliverable D6.3 – Autonomous Single-Arm Pick and Place Manipulation Skills. This de-
liverable focuses on the extension of grasp generation and arm trajectory optimization methods
towards dual-arm tasks, which must observe kinematic closure of the manipulator chain through
the manipulated object. We also report on the integration of extended methods into the CEN-
TAURO system. The developed dual-arm manipulation pipeline is ready for the final evaluation
of the integrated CENTAURO disaster-response system.
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1 Introduction
Daily-life scenarios are full of objects designed to be manipulated with anthropometric arms.
Thus, human-like robots are the natural solution to be used in quotidian environments. In these
scenarios, many objects require two or more end-effectors in order to be manipulated prop-
erly. Such objects may have complex shapes involving multiple degrees of freedom (DOF), be
partially or completely flexible or simply be too large and/or heavy for single-handed manipu-
lation. For instance, moving a table or operating a heavy power drill. Consequently, designing
algorithms for dual-arm manipulation has attracted much interest in the research community.

In this deliverable, we describe an integrated system capable of performing autonomous
dual-arm pick-and-place tasks. Such tasks involve the consecutive accomplishment of several
sub-tasks: object recognition and segmentation, pose estimation, grasp generation, and arm tra-
jectory planning and optimization. Each of these subproblems is challenging in unstructured
environments when performed autonomously—due to the high level of uncertainty coming
from noisy or missing sensory measurements, complexity of the environment, and modeling
imperfection. The pipeline for solving these tasks for single-arm manipulation was developed
in ”Deliverable D6.3 Autonomous Single-Arm Pick and Place Manipulation Skills”. The main
focus of this deliverable is the extension of this pipeline towards dual-arm tasks.

First, we use semantic segmentation to detect the object. A segmented point cloud is then
passed to the next step of the pipeline: deformable registration and grasp generation. Since in-
stances of the same object category are similar in their usage and geometry, we transfer grasping
skills to novel instances based on the typical variations of their shape [1][2]. Intra-classes shape
variations are accumulated in a learned low-dimensional latent shape space and are used to infer
new grasping poses.

Finally, we optimize the output trajectories of the grasp planner by applying a modified ver-
sion of Stochastic Trajectory Optimization for Motion Planning (STOMP) [3], which we refer
to as STOMP-New [4]. We extend our previous work by adding an additional cost component
to preserve the kinematic chain closure constraint when both hands hold an object. For typical
human-like upper-body robots, the dual-arm trajectory optimization problem with closure con-
straint is a challenging task due to curse of dimensionality and severe workspace constraints for
joint valid configurations. We evaluate the capabilities of the designed system on the dual-arm
pick-and-place task for a watering can in simulation (Fig. 1).
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2 Related Work
Robotic systems which perform dual-arm manipulation are widely used for complex manipula-
tion tasks. Many of such systems are applied in industrial scenarios. For instance, Krüger et al.
[5] present a dual arm robot for an assembly cell. The robot is capable of performing assembly
tasks both in isolation and in cooperation with human workers in a fenceless setup. The authors
use a combination of online and offline methods to perform the tasks. Similarly, Tsarouchi et al.
[6] allow dual arm robots to perform tasks, which are usually done manually by human opera-
tors in an automotive assembly plant. Stria et al. [7] describe a system for autonomous real-time
garment folding. The authors introduce a new polygonal garment model, which is shown to be
applicable to various classes of garment. Since the software of such complex systems consist
of multiple components, we further briefly review some of the noticeable works for each major
software module.

2.1 Semantic Segmentation
The field of semantic segmentation experienced much progress in recent years due to the avail-
ability of large datasets. Several works showed good performance using complex models that
require extensive training on large data sets [8], [9]. In contrast, in this work we use a transfer
learning method that focuses on fast training, which greatly increases the flexibility of the whole
system [10].

2.2 Transferring Grasping Skills
Vahrenkamp et al. [11] transfer grasp poses from a set of pre-defined grasps based on the RGB-
D segmentation of an object. The authors introduced a transferability measure which determines
an expected success rate of the grasp transfer. It was shown that there is a correlation between
this measure and the actual grasp success rate. In contrast, Stouraitis et al. [12] and Hillenbrand
and Roa [1] warp functional grasp poses such that the distance between point correspondences is
minimized. Subsequently, the warped poses are replanned in order to increase the functionality
of the grasp. Those methods can be applied only in off-line scenarios, though, because of their

Figure 1: Pre-grasp pose of the Centauro robot for dual-arm grasping of an unknown watering
can.
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large execution time. The method explained here, on the other hand, is suitable for on-line
scenarios.

2.3 Dual-Arm Motion Planning
Dual-arm motion planning is a challenging task, for which intensive research has been carried
out. Szynkiewicz and Błaszczyk [13] proposed an optimization-based approach to path plan-
ning for closed-chain robotic systems. The path planning problem was formulated as a function
minimization problem with equality and inequality constraints in terms of the joint variables.
The solution is found numerically. Vahrenkamp et al. [14] presented two different approaches
for dual-arm planning: Jacobian Pseudoinverse-Based (J+) and Inverse Kinematics Rapidly
Exploring Random Tree (IK-RRT). The advantage of the first approach is that it does not need
an IK solver. However, IK-RRT was shown to perform better on both single and dual-arm tasks.
In contrast, a heuristic-based approach was proposed by Cohen et al. [15]. The method relies on
the construction of a manipulation lattice graph and an informative heuristic. Even though the
success of the search depends on the heuristic, the algorithm showed good performance in com-
parison with several sampling-based planners. Byrne et al. [16] use Artificial Potential Fields
(APF) in their work. The method consists of goal configuration sampling, subgoal selection and
APF motion planning. It was shown that the method improves APF performance for both in-
dependent and cooperative dual-arm manipulation tasks. An advantage of our approach to arm
trajectory optimization is the flexibility of the prioritized cost function which can be extended
to support new criteria, which we demonstrate in this work.

2 RELATED WORK 7
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3 Method

3.1 System Overview
The robot is equipped with two anthropomorphic manipulators with 7 DOFs each. The right arm
possesses a SCHUNK SVH 5-finger hand as an end-effector, while the left arm is equipped with
a HERI hand [17]. The sensor head has a Velodyne Puck rotating laser scanner with spherical
field of view as well as multiple cameras. In addition, the Kinect v2 sensor is mounted on the
upper part of the chest. The CENTAURO robot is depicted in Fig. 2.

In order to perform an autonomous dual-arm pick-and-place task we created the following
pipeline:

• Semantic segmentation performed by using RGB-D data from the Kinect v2,

• with the segmented point cloud as input, we perform non-rigid shape registration to obtain
grasping poses,

• finally, a trajectory optimization is carried out in order to obtain collision-free trajectories
to reach pre-grasp poses.

The diagram of this pipeline is shown in Fig. 3.

3.2 Semantic Segmentation
For perceiving the object to be manipulated, a state-of-the-art semantic segmentation architec-
ture RefineNet [8] is trained on synthetic scenes. Those are composed of a small number of
captured background images which are augmented randomly with inserted objects. This ap-
proach follows Schwarz et al. [10] closely, with the exception that the inserted object segments
are rendered from CAD meshes using the open-source Blender renderer. The core of the model

3D laser
scanner

Cameras

RGB-D
sensor

7 DoF arm

9 DoF
SCHUNK hand

4 DoF
Heri hand

Figure 2: The Centauro robot. Main components of the upper-body are labeled.
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Velodyne

Semantic
SegmentationKinect-v2

Trajectory
Optimization

Grasp
Genration

Figure 3: Simplified diagram of the system, showing the information flow between core com-
ponents. Orange: sensors; Green: perception components; Blue: planning components.

consists of four ResNet blocks. After each block the features become more abstract, but also
lose resolution. So, the feature maps are upsampled and merged with the map from the next
level, until the end result is at the same time high-resolution and highly semantic feature map.
The final classification is done by a linear layer followed by a pixel-wise SoftMax.

At inference time, also following Schwarz et al. [10], we postprocess the semantic segmen-
tation to find individual object contours. The dominant object is found using the pixel count
and is extracted from the input image for further processing.

3.3 Grasp Planning
The grasp planning is a learning-based approach that exploits the fact that objects of similar
shape can be grasped in a similar way. We define a category as a set of models with related
extrinsic geometries. In the training phase of the method, a shape (latent) space of the category
is built. This is done by computing the deformation fields of a canonical model towards the other
models in the category. This is carried out by using the Coherent Point Drift (CPD) non-rigid
registration method. CPD provides a dense deformation field, thus new points can be warped
even after the registration. Additionally, the deformation field of each object in the training
set can be expressed in a vector whose dimensionality equals the number of point times the
number of dimensions of the canonical model. This means that the variations in shape from one
object to the other can be expressed by a vector of the same length across all training samples.
Thus, subspace methods can be straightforward applied. Finally, the principal components of
all these deformation fields are calculated by using Principal Component Analysis - Expectation
Maximization (PCA-EM). They define the orthonormal basis of the shape space.

Once the shape space is constructed, new instances can be generated by interpolating and
extrapolating in the subspace. In the inference phase, we search in the latent space in a gradient-
descent fashion for an instance which relates to the observed model at best. We do this by
optimizing a non-linear function that minimizes a weighted point distance. An additional rigid
registration is also incorporated in the cost function to account for misalignments. Furthermore,
the latent variables are regularized which has shown to provide numerical stability. Once the
descriptor in the latent space is known, it is transformed back to obtain the deformation field
that best describes the observation. In this process, partially occluded shapes are reconstructed.
The registration is robust against noise and misalignments to certain extent [18]. Fig. 4 shows a
partially observed instance with noise and the reconstructed object after the shape registration.

The canonical model has associated control poses that describe the grasping motion. These
control poses are warped using the inferred deformation field. More details about the shape
space registration can be found in [2]. For bimanual manipulation we associate individual

3 METHOD 9



CENTAURO – 644839 D6.4 Autonomous Dual Arm Pick and Place Manipulation Skills

Observed Instance Reconstructed Object Real ObjectRegistration

Figure 4: Shape space registration on the watering can category. Green: pointcloud of ob-
served instance. Black: canonical model, fitted to the observed instance. The method is able to
reconstruct a partially occluded instance containing noise.

grasping control frames to each arm and warp them according to the observed model. Because
each of the control poses is independent, simultaneous arm motions are possible. The control
poses contain the pre-grasp and final grasp poses.

3.4 Trajectory Optimization
Given pre-grasp poses for both arms, it is key to plan a collision-free trajectory to reach them.
We use our modification of Stochastic Trajectory Optimization for Motion Planning (STOMP)
[3]: STOMP-New, which showed better performance in previous experiments [4]. It has a cost
function consisting of five cost components: collisions, joint limits, end-effector orientation
constraints, joint torques and trajectory duration. The input is an initial trajectory Θ which
consists of N keyframes θi ∈ RJ in joint space with J joints. A naı̈ve initial trajectory that is
often used is the linear interpolation between the given start and goal configurations θstart and
θgoal. Start and goal configurations are unchanged during the optimization, the algorithm then
outputs an optimized trajectory.

Since the optimization is performed in joint space, extending the algorithm to use two arms
instead of one is straightforward. We extended the approach to support multiple end-effectors
(two in the context of this work) for obstacle cost computation as well as for orientation con-
straints. These upgrades allow us to optimize trajectories of two independent arms simultane-
ously. Moreover, in case dual arm manipulation is required, a kinematic chain closure constraint
has to be satisfied. In order to obtain trajectories which satisfy this constraint, we add an addi-
tional term qcc(., .) to the cost function:

q(θi,θi+1) =qo(θi,θi+1) + ql(θi,θi+1) + qc(θi,θi+1)

+qd(θi,θi+1) + qt(θi,θi+1) + qcc(θi,θi+1),
(1)

where q(θi,θi+1) is a cost for the transition from the configuration θi to θi+1. The cost function
now consists out of six terms, the first five of which are coming from our original implementa-
tion of STOMP-New. By summing up costs q(., .) of the consecutive pairs of transitions θi,θi+1

of the trajectory Θ, we obtain the total cost.
The new term qcc(., .) for the kinematic chain closure constraint is formulated as:

qcc(θi,θi+1) =
1

2
max

j
qct(θj) +

1

2
max

j
qco(θj), j ∈ i...i+ 1, (2)
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where qct(.) is the term which penalizes deviations in the translation between the end-effectors
along the transition and the term qco(.) penalizes deviations of the relative orientation of the
end-effectors, respectively.

Given two end-effectors ee1 and ee2, the initial translation tdesired ∈ R3 between them is
measured in the very first configuration θ0 of the trajectory. Then, for every evaluated con-
figuration θj , the corresponding translation tj between ee1 and ee2 is measured. We can now
measure the deviation from the desired translation: δt = |tdesired − tj|. Finally, we select the
largest component tdev = maxx,y,z δt|δt = 〈x, y, z〉 and compute the translation cost:

qct(θj) =

Cct + Cct · tdev if tdev ≥ tmax

tdev
tmax

, otherwise
, (3)

where tmax is the maximum allowed deviation of the translation component and Cct � 1 is a
predefined constant. Thus, qct ∈ [0, 1] if the deviation of the translation is below the allowed
maximum and qct � 1 otherwise.

Similarly, we define the term qco(.) for penalizing deviations in the orientation. The initial
relative orientation odesired ∈ R3 between ee1 and ee2 is measured in the very first configuration
θ0. For every configuration θj , the corresponding relative orientation oj is measured. The
deviation from the desired orientation is computed: δo = |odesired − oj|. We select the largest
component odev = maxr,p,y δo|δo = 〈r, p, y〉 and compute the orientation cost:

qco(θj) =

Cco + Cco · odev if odev ≥ omax

odev
omax

, otherwise
, (4)

where omax is the maximum allowed deviation of the orientation component and Cco � 1 is
a predefined constant. Extending the algorithm with this constraint allows to optimize trajec-
tories, maintaining the kinematic chain closure constraint, and, hence, plan the trajectories for
moving objects which are held with two hands.

3 METHOD 11
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Table 1: Comparison of the average runtime and success rate with/without closure constraint.

Without closure constraint With closure constraint
Runtime [s] 0.34±0.01 4.31±2.42
Success rate 100% 83%

Runtime growth — 1267%

4 Evaluation
First, we present the evaluation of the arm trajectory optimization method alone. In the latter
subsection, we evaluate the performance of the developed pipeline by picking a watering can
with two hands.

4.1 Trajectory Optimization
In this subsection we present the results of the evaluation of the trajectory optimization in iso-
lation. Experiments were performed using the Gazebo simulator. Both 7 DOFs arms were used
simultaneously, resulting in a total of 14 DOFs. We performed the experiments on an Intel
Core i7-6700HQ CPU, 16 GB of RAM, 64 bit Kubuntu 16.04 with 4.13.0-45 kernel using ROS
Kinetic. The algorithm ran on a single core with 2.60 GHz.

Since the main extension we have made to the trajectory optimization algorithm in this work
is the introduction of the closed kinematic chain constraint, we investigate how it influences
the performance of the algorithm. We compared the performance of the algorithm with and
without the constraint in an obstacle-free scenario, where the robot had to lift both arms upwards
(Fig. 5). We solved the problem 50 times with enabled/disabled closure constraint, each. The
time limit for the algorithm was set to 10 s. The obtained runtimes and success rates are shown
in the Table 1.

(a) (b)

Figure 5: Comparison of the trajectories obtained with/without kinematic chain closure con-
straint. Red: start configuration; Yellow: goal configuration; Green: paths of the end-effectors.
(a) Closure constraint enabled. The robot has to follow the kinematically difficult path. (b)
Closure constraint disabled. The arms can be moved easily to the sides of the robot.
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One can observe that when the algorithm performs optimization without closure constraint,
the runtime is relatively short with a very small standard deviation and 100% success rate.
On the other hand, with enabled closure constraint, the runtime grew significantly by 1267%
and the success rate dropped to 83%. This happens because the space of valid configurations is
reduced by several orders of magnitude when enforcing the closure constraint and the sampling-
based algorithm struggles to converge to a valid solution. This also explains the large standard
deviation for the case when the closure constraint is enabled. In Fig. 5 one can also observe
the difference between two typical trajectories for this task. With enabled closure constraint the
robot has to follow a kinematically complicated path. Meanwhile without this constraint the
arms can be moved easily widely by the sides of the robot.

We also demonstrate the optimization with closure constraints enabled for a practical task.
The robot has a long bulky bar laying on its wrists (Fig. 6 (a)) and the task is to lift it up. Since
the bar is not secured in any way, it is essential to preserve the closure constraint, and also to
maintain the exact orientation of the end-effectors along the whole trajectory. The executed
trajectory can be seen in Fig. 6.

(a) (b)

(c) (d)

Figure 6: The Centauro robot lifting a long bulky bar. As the bar is laying on the wrists un-
secured, not only the closure constraint has to be preserved, but also the orientation of the
end-effectors has to remain the same during the whole trajectory.

4 EVALUATION 13
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Table 2: Success rate of picking watering cans from the test set and performance of the trajectory
optimization method.

Success rate
(attempts to solve)

Traj. opt. runtime [s]
Success rate

Can 1 75% (4)
0.9±0.24

100%
Can 2 100% (5)
Can 3 60% (3)

4.2 Dual-Arm Picking of Watering Can
We evaluate the proposed system by picking a watering can with two arms in a functional way,
i.e., that the robot can afterwards use it. The experiments were performed in the Gazebo sim-
ulator. To speed up the simulation, only the upper-body was actuated. Moreover, the collision
models of the fingers were modeled as primitive geometries: capsules and boxes. The laser
scanner and the RGB-D sensor were also incorporated in the simulation. We trained the seman-
tic segmentation model using synthetic data. We used 8 CAD models of the watering can to
render 400 frames. Additional training data with semantic labeling is obtained by placing the
frames onto multiple backgrounds and generating the ground truth labels.

For constructing the shape space we define a training set composed of the same watering
cans used to train the semantic segmentation model. The test set consisted out of three different
watering cans. For the registration, the objects were represented as point clouds generated by
ray-casting operations on meshes obtained from 3D databases. The shape space contained 8
principal components with a explained variance equal to 98%.

The task of the experiment is to grasp and to lift upwards all three cans from the test set.
Each trial starts with the robot standing in front of the table, on which the watering can is

Figure 7: Dual-arm trajectory for reaching pre-grasp poses. Yellow: initial pose; Black and
grey: goal pose; Green: paths of the end-effectors. The arms have to retract back in order to
avoid collisions with the table.

4 EVALUATION 14



CENTAURO – 644839 D6.4 Autonomous Dual Arm Pick and Place Manipulation Skills

(a) (b) (c) (d) (e)

Figure 8: Centauro performing a dual-arm functional grasp of the watering can. (a) Initial pose.
(b) - (d) Reaching the pre-grasp pose. (e) Can is grasped. (f) Can is lifted.

(a) (b) (c)

Figure 9: Three cans from the test set successfully grasped.(a) - (c) Can 1, Can 2, Can 3
respectively. Note that all the cans have different geometry.

placed. The arms of the robot are located below the surface of the table, so that a direct approach
(straight line) to the object will result in a collision. Each can had to be successfully grasped
three times with different orientation so the task is considered solved. In this manner, the
can is rotated around its Z-axis for +0.25, 0 and -0.25 radians. We used ground truth for the
6D pose of the can. In order to evaluate the performance of the non-rigid registration against
misalignments, noise in range ±0.2 radians was added to the yaw component of the 6D pose.
The trials were performed until each of the three grasps succeeded once. Obtained success rates
and measured average runtime of the trajectory optimization method are presented in Table 2.

Our system solved the task Can 2 with no issues, whereas Can 1 and especially Can 3
were more difficult. For Can 1, there was a minor misalignment of the grasp pose for the right
hand, which did not allow us to grasp the can successfully. Can 3 had the most distinctive
appearance among the cans in our dataset, that is why it caused the most difficulties. During the
experiment we often had to run the non-rigid registration several times because it was stuck in
local minima. STOMP-New showed consistent success rate and satisfactory runtime of around
one second. Typical trajectories for reaching pre-grasp poses are shown in Fig. 7. The robot
performing the experiment with Can 2 is depicted in Fig. 8. All three cans forming our test set,
successfully grasped, are shown in Fig 9.

4.3 Real-Robot Experiments
In order to evaluate the system on the real Centauro robot, we performed the same experiment,
as described above for a single orientation of the watering can. The pipeline was executed five
times in attempt to grasp the can with two hands in a functional way. The method succeeded
four times out of five. We measured the average runtime for each component of the system as
well as the success rate, where it was possible. Obtained average runtimes and success rates are
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Table 3: Average runtime and success rate of each component of the pipeline.

Component Runtime [s] Success rate
Semantic segmentation 0.72 ± 0.21 100%

Pose estimation 0.13 ± 0.06 —
Grasp generation 4.51 ± 0.69 —

Trajectory optimization 0.96 ± 0.29 100%
Complete pipeline 6.32 ± 1.25 80%

shown in Table 3.
We do not provide the success rate for the pose estimation, since the ground truth is not

available. Consequently, it is hard to access the success rate of grasp generation as it may
fail due to the previous step of the pipeline. Overall, the pipeline took 6-7son average with a
success rate of 80%. One of the attempts failed on the stage of grasping the can. This happened
because the approaching (goal) pose of the trajectory optimizer was not close enough to the
object which results in a collision between the hand and the watering can while reaching the
pregrasp pose. Consequently, the object moved away from the estimated pose. This suggests
that the approaching pose given to the trajectory optimizer should be closer to the object.

In addition to the watering can, Centauro also grasped a two-handed drill to demonstrate
that our pipeline can be applied to different types of objects. The process of grasping and lifting
of both tools is shown in Fig 10. Footages of all described experiments can be found online1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10: Centauro performing a dual-arm functional grasp of the watering can and drill. (a)
Initial pose. (b) - (c) Reaching the pre-grasp pose. (d) Can is grasped. (e) Can is lifted. Same
procedure applies to the drill.

1Experiment video: http://www.ais.uni-bonn.de/videos/Humanoids_2018_Bimanual_
Manipulation
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5 Conclusions
We extended a single-arm pipline to perfom tasks using two hands. The approach begins with
the perception modules, which segment the object of interest. Given the segmented mesh, we
utilize a non-rigid registration method in order to transfer grasps within an object category to
the observed novel instance. Finally, we extended our previous work on STOMP in order to
optimize dual-arm trajectories with kinematic chain closure constraint.

In order to evaluate our integrated system, we performed a set of experiments in simulation
and on the real Centauro robot, which has two arms with 7 DOFs each. In the main experiment,
the robot successfully grasped three previously unseen watering cans with two hands from dif-
ferent poses. The latent space for non-rigid registration was built using only eight watering can
instances. In this experiment, the trajectory optimization for dual-arm setup showed success
rate of 100% and average runtime of 0.9 seconds. The experiment on trajectory optimization
showed that our method can solve reliably and fast the tasks of planning for two arms which
act independently. However, with introduction of the closure constraint, the runtime grew sig-
nificantly. Nevertheless, we demonstrated that the method is capable of producing feasible
trajectories even under multiple complex constraints.

We performed a series of experiments on the real robot to grasp a watering can and a two-
handed drill. These experiments demonstrated that proposed pipeline can solve real-world tasks.
The developed dual-arm manipulation pipeline is ready for the final evaluation of the integrated
CENTAURO disaster-response system.

5 CONCLUSIONS 17
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Transferring Category-based Functional Grasping

Skills by Latent Space Non-Rigid Registration
Diego Rodriguez and Sven Behnke

Abstract—Objects within a category are often similar in
their shape and usage. When we—as humans—want to grasp
something, we transfer our knowledge from past experiences
and adapt it to novel objects. In this paper, we propose a
new approach for transferring grasping skills that accumulates
grasping knowledge into a category-level canonical model. Grasp-
ing motions for novel instances of the category are inferred
from geometric deformations between the observed instance and
the canonical shape. Correspondences between the shapes are
established by means of a non-rigid registration method that
combines the Coherent Point Drift approach with subspace
methods. By incorporating category-level information into the
registration, we avoid unlikely shapes and focus on deformations
actually observed within the category. Control poses for gener-
ating grasping motions are accumulated in the canonical model
from grasping definitions of known objects. According to the
estimated shape parameters of a novel instance, the control poses
are transformed towards it. The category-level model makes our
method particularly relevant for on-line grasping, where fully-
observed objects are not easily available. This is demonstrated
through experiments in which objects with occluded handles are
successfully grasped.

Index Terms—Dexterous manipulation, Grasping, Multi-
fingered hands.

I. INTRODUCTION

W
HILE transferring grasping skills within a category

happens frequently and effortless in humans, obtaining

that generalization in robots is still an open problem. People

can be shown objects that they never saw before, and they often

will immediately know how to grasp and operate them. This

happens by transferring knowledge from their learned model

of the object category, e.g., screw drivers, to novel instances.

Although the manipulation of known objects can be planned

offline, many open-world applications require the manipulation

of unknown instances. Our approach accumulates manipulation

knowledge of known instances in category-level models and

transfers manipulations skills to novel instances (Fig. 1).

The method presented in this paper focuses on functional

grasping, i.e., on motions that allow not only to grasp the object

but also to use it. We use the term grasping to refer to the
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Figure 1: Shape information and grasping knowledge for known

object instances are aggregated in a category-level canonical

model. Grasping control poses are transferred to novel instances

of the category for generating the grasping motion.

process of bringing the object into the hand, and not only to the

final configuration of hand and object. We propose a method

for generating grasping motions for novel instances by making

use of category-level shape information represented by a

learned latent shape space. Our method aggregates object shape

and grasping knowledge from multiple known instances of a

category in a canonical model. The learned latent space of shape

variations enables a category-specific shape-aware non-rigid

registration procedure that establishes correspondences between

a view of a novel object instance and the canonical model.

Our method finds a transformation from the canonical model

to the view in the latent shape space—linearly interpolating

and extrapolating from other transformations found within

the category—which best matches the observed 3D points.

This estimates the shape parameters of the novel instance and

allows for inference of its occluded parts. By the non-rigid

transformation and the aggregated manipulation knowledge,

control poses for the novel instance are inferred. The grasping

motion is finally generated by using those control poses.

In this paper, we extend our previous work [1] by accumu-

lating grasping knowledge in the canonical model in addition

to the shape information, which enriches our transferring skill

model.

II. RELATED WORK

A. Non-Rigid Registration and Shape Spaces

Most of the non-rigid registration methods proposed so far

differ mostly by the prior restrictions or regularization on the

deformation that the points can undergo. Several restrictions
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such as conformal maps [2]–[4], isometry [5]–[7], thin-plate

splines [8], [9], elasticity [10] and Motion Coherence Theory

[11] have been used to encourage or constrain different types

of transformations.

For surface reconstruction, many methods use non-rigid

registration [12]–[15]. Approaches such as presented by Li

et al. [12] and Zollhöfer et al. [16] sequentially add higher

frequency details coming from new depth camera frames to a

low-resolution 3D capture through non-rigid registration.

For category-based shape spaces, several methods have been

proposed. Hasler et al. [17] generate a shape space of human

bodies with poses using 3D markers and human scans. Burghard

et al. [18] developed a shape space of varying geometry based

on dense correspondences. Engelmann et al. [19] define a shape

manifold which models intra-class shape variance; this method

is robust with noisy or occluded regions.

B. Transferring Grasping Skills

Based on segmented objects according to their RGB-D

appearance, Vahrenkamp et al. [20] transfer grasp poses from

a set of template grasps. Ficuciello et al. [21] developed an

approach to confer grasping capabilities based on a reinforce-

ment learning technique and postural synergies. In [22] and

[23], functional grasp poses are warped such that distance

between correspondences is minimized, then the warped poses

are replanned in order to increase the functionality of the

grasp. In [24] a similar contact warping is combined with

motor synergies to generalize human grasping. Stueckler et al.

[25] transfer manipulation skills using a non-rigid registration

method based on multi-resolution surfel maps. The non-rigid

registration serves as the mechanism to warp available grasping

poses.

C. Discussion

Although current state-of-the-art methods for non-rigid

registration yield good results, they have some limitations.

Newcombe et al. [15] use optical flow constraints and thus this

approach does not perform well with large deformations or

changes in color and illumination. Moreover, several captures

of the object are required. The method by Burghard et al.

[18] accurately estimates dense correspondences, but does

not perform well with incomplete scans or noisy data. To

solve these problems, we incorporate category-level information

in our approach, such that we are able to register partially-

occluded novel instances using a single capture of the object.

Methods such as Engelmann et al. [19] deal with minor

misalignments and occlusions, but do not offer correspondences

between points and do not give any kind of transformation.

Our method, on the other hand, offers a transformation for

each point of the novel instance and even points that do not

belong to the object which allows us to transform grasp poses.

Regarding transferring grasping skills, we tackle the problem

of requiring a fully observed [22] or a non-occluded [20]

object by exploiting the geometrical information residing in

our learned categorical model. Unlike [25] we model shape

and grasping not for single known instances, but for object

categories, which gives us the possibility to learn typical shape

variations and to infer grasping information even when parts of

the object are not observed. More importantly, none of previous

approaches is able to accumulate and to use knowledge from

several previous successfully experiences, which is the main

focus of this paper.

III. METHOD

Our approach is composed of a learning phase and an

inference phase (Figs. 2 and 3). In the learning phase, a

category-specific linear model of the transformations that a

category of objects can undergo is built. In this manner, poses

in the space of the canonical shape can be transformed into the

space of an observed instance. These poses can be added even

after the learning phase. The category-specific linear model

is learned as follows: First, we select a single instance from

the training dataset to be the canonical model of the category.

Then, we find the transformations relating this instance to all

other instances of the category using Coherent Point Drift

(CPD) [11]. Finally, we find a linear latent subspace of these

transformations, which becomes our transformation model for

the category. For each instance in the training set, an associated

grasping descriptor ς (vector representation of the grasping

motion) is also transformed into the canonical space. In this

manner, multiple experiences can be aggregated in the canonical

model.

In the inference phase, given a novel observed instance, our

method searches in the subspace of transformations to find

the transformation which best relates the canonical shape to

the observed instance. Depending on the resulting latent shape

variables and the aggregated grasping knowledge accumulated

in the canonical model, a grasping descriptor for the novel

instance is inferred.

A. Categories and Shape Representation

A category is composed by a set of objects which share the

same topology and have a similar shape. Each category has a

canonical shape C that will be deformed to fit the shape of

the training and testing sample shapes. To represent a shape,

we use point clouds, which can be generated from meshes by

ray-casting from several viewpoints on a tessellated sphere and

then down-sampling with a voxel grid filter. Each category

specifies a canonical pose and reference frame, used for initial

alignments.

B. Coherent Point Drift

Here, we shortly describe the Coherent Point Drift (CPD)

[11] and how we use it for our non-rigid registration.

CPD estimates a deformation field mapping between a

template point set S[t] = (s
[t]
1 , ..., s

[t]
M )T and a reference point

set S[r] = (s
[r]
1 , ..., s

[r]
N )T . The points in S[t] are modeled as

centroids of a Gaussian Mixture Model (GMM) from which the

points in S[r] are drawn. CPD maximizes the likelihood of the

GMM while imposing constraints on the motion of the centroids

such that points near each other should move coherently and

have a similar motion to their neighbors [26]. The likelihood of
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Figure 2: Training phase. The deformations between each instance and the canonical model are calculated using CPD. These

deformations are assembled into the design matrix Y. Using PCA-EM, the principal components which constitute the latent

space are extracted. The grasping descriptor for each training sample is aggregated in the canonical model. The latent variables

serve as feature vector while the grasping descriptor is the desired output for the grasping transfer model.

the GMM is not directly maximized, but instead its equivalent

negative log-likelihood function is minimized:

E(ψ, σ2) = −
N∑

n=1

log
M∑

m=1

exp−
1

2σ2 ‖s[r]n −T (s[t]m ,ψ)‖
2

, (1)

where T (s
[t]
m ,ψ) is a parametrized transformation from the

template point set to the reference set, and σ2 is the covariance

of the Gaussian density. The transformation T , for the non-rigid

registration, is defined as the initial position plus a displacement

function v:

T (S[t], v) = S[t] + v(S[t]). (2)

The constraints on the motion of the centroids are realized

by regularizing the displacement function v. Adding this

regularization φ(v) to the negative log-likelihood Eq. (1), we

obtain

f(v, σ2) = E(σ2, v) +
λ

2
φ(v), (3)

where λ is a trade-off parameter between the goodness of

maximum likelihood fit and regularization. A particular choice

of φ(v) leads to the following displacement function v(Z) [11]:

v(Z) = G(S[t],Z)W, (4)

for any set of D-dimensional points ZN×D. G(S[t],Z) is

defined as a Gaussian kernel matrix composed element-wise

by:

gij = G(s
[t]
i , zj) = exp

− 1
2β2

∥

∥

∥
s
[t]
i

−zj

∥

∥

∥

2

, (5)

WM×D is a matrix of kernel weights, and β is a scalar

that controls the strength of interaction between points. An

additional interpretation of W is as a set of D-dimensional

deformation vectors, each associated with one of the M points

of S[t]. For convenience in the notation, GM×M will denote

G(S[t],S[t]). Note that G(·, ·) can simply be computed by Eq.

(5), but the matrix W needs to be estimated.

To minimize Eq. (3), CPD uses an Expectation Maximization

(EM) algorithm. In the E-step, the posterior probabilities matrix

P is estimated using past parameter values. This matrix P is

composed element-wise by:

pmn =
e−

1
2σ2 ‖s

[r]
n −(s[t]m+G(m,·)W)‖

2

∑M

m=1 e
− 1

2σ2

∥

∥

∥
s
[r]
n −(s

[t]
m+G(k,·)W)

∥

∥

∥

2

+ ω
1−ω

(2πσ2)
D
2

N
(6)

where ω reflects the assumption on the amount of noise.

In the M-step, the matrix W is estimated by:

(G+ λσ2d(P1)−1)W = d(P1)−1PS[r] − S[t] (7)

where 1 represents a column vector of ones and d(·)−1 is the

inverse diagonal matrix. For a more detailed description of the

CPD algorithm, please refer to [11].

In our method, we use the canonical shape C for the

deforming template shape S[t] and each training example Ti

as the reference point set S[r]. Therefore, the transformations

Ti are defined as

Ti(C,Wi) = C+GWi (8)

where Wi is the W matrix computed by taking training

example Ti as the reference point set S[r].

C. Latent Space

CPD allows us to define a feature vector representing

the deformation field. This vector has the same length for

all training examples; additionally, elements in this vector

correspond with the same elements in another. This allows us

to learn a latent lower-dimensional space.

We observe from Eq. (8) that the deformation field between

the canonical and an observed instance is fully determined by

G and W. Moreover, we see that G only requires the points

of the canonical shape and it remains constant for all training

examples. Therefore, the entire uniqueness of the deformation

field for each training example is captured by its matrix W.

We construct a row vector yi ∈ R
p=M ·D from each

matrix Wi of each training example Ti, that characterizes the
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Figure 3: The canonical shape (red) is matched against a partially-occluded target shape (leftmost) by finding its latent shape

parameters. The grasping descriptor cς is inferred from x. Finally, the descriptor is transformed to the observed space.

corresponding deformation field. The vectors are normalized

to have zero-mean and unit-variance and are then assembled

into a design matrix Y. Finally, we find a lower-dimensional

manifold of deformation fields for the category by applying

the Principle Component Analysis Expectation Maximization

(PCA-EM) algorithm on the matrix Y.

Much like with CPD, we alternate between an E- and M-step.

The E-step is given by:

X = YLT (LLT )−1 (9)

whereas the M-step is defined by:

L = (XTX)−1XTY. (10)

Lp×q is the resulting matrix of principle components. So, for

a new normalized set of observations Yo, the latent variables

can be found by postmultiplying Yo by L. In this manner, a

deformation field is now described by only q latent parameters.

Similarly, any point x in the latent space can be converted into

a deformation field transformation by first postmultiplying x

by LT and by converting the result into a WM×D matrix after

the respective denormalization. Thus, moving through the q-

dimensional space linearly interpolates between the deformation

fields.

D. Grasping Knowledge Aggregation

We aggregate grasping knowledge from different instances

into the canonical model in two steps: first, by generating

the grasping motion in the observed space and, second, by

transforming its grasping descriptor into the canonical space.

A grasping motion is represented as a sequence of

parametrized primitives each of them defined by a control

pose expressed in the same coordinate system of the shape

of the object. The generation of grasping motions can be

performed manually for each instance in the training set, which

favors accuracy over time and wear off of the system (on

real robotic platforms). This imposes however a limit on the

number of samples of the training dataset mostly because of

time constraints. In order to overcome this limit, we adopt a

constrained sample-based motion generation approach.

A sampled motion is created by generating constrained

random 6D poses around the control poses of the canonical

grasping motion as depicted in Figure 4. Each component of

the translation is sampled from a normal distribution. For the

rotation, a quaternion is build out of three uniformed points

following the approach described in [27]. These orientations

are filtered by specific functional constraints of each category,

in the case of drills, for example, rotations that occlude or

impede the use of the trigger are discarded. If the sampled

grasping motion leads to collisions with other objects in the

environment including the robotic arm, the motion is discarded

as well. Finally, the sampled motion is executed and evaluated.

If the object is functionally grasped successfully, the grasping

control poses are transformed into the canonical space.

Finding the transformation from the observed space into the

canonical space is equal to finding the inverse transformation

of Eq. (2) or equivalently to finding the inverse transformation

of Eq. (4). However, the inverse function v−1 is not directly

available. It can nonetheless be estimated for a point o in

the space of the observed shape using a set of points Z =
(z1, ..., zM )T in the canonical space which deform close to o

by the equation:

v−1(o) = −

∑M

i=1 G(o, zi + v(zi))v(zi)∑M

i=1 G(o, zi + v(zi))
. (11)

Figure 4: Sampled-based grasping motion generation. 6D

constrained random poses are sampled around control poses

of the canonical grasping motion.
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For transforming the orientation, we apply Eq. (11) to the

rotational vector base of each pose and orthonormalize it.

For each instance in our training dataset, we have so far a

latent vector xi that represents the shape deformations from

the canonical instance to the observed instance and a grasping

descriptor ςi transformed into the canonical space. We set the

latent vector xi as a feature vector and the grasping descriptor ςi
as the corresponding target output and train a linear regression

model. In other words, grasping knowledge is aggregated in the

canonical model by serving as a training label of a regression

model (Fig. 5). Algorithm 1 summarizes the training phase

(Figure 2).

E. Shape Inference

A shape transformation is specified by the q parameters of

the latent vector xi plus additional seven parameters of a rigid

transformation θi. The rigid transformation is meant to account

for minor misalignments between the observed shape and the

canonical shape at the global level.

We concurrently optimize for the latent parameters and

the rigid transformation using gradient descent. As CPD and

ICP, our method requires an initial coarse alignment of the

observed shape because of the expected local minima. We

want to find an aligned dense deformation field which when

applied to the canonical shape C minimizes the distance to

corresponding points in the observed shape O. Specifically,

we want to minimize the energy function:

E(x,θ) = −
M∑

m=1

log
N∑

n=1

exp
1

2σ2 ‖On−Θ(Tm(Cm,Wm(x)),θ)‖2

(12)

where the function Θ applies the rigid transformation given

parameters θ.

When a minimum is found, we can transform any point or set

of points into the observed space by applying the deformation

Figure 5: Grasping knowledge aggregation. Grasping descrip-

tors of observed instances are transformed and aggregated in

the canonical model by Eq. (11)

field using Eq. (4) and Eq. (2) and then applying the rigid

transformation Θ. Moreover, CPD provides a dense deformation

field, allowing us to find deformation vectors for novel points,

even those added after the field is created.

F. Transferring Grasping Skills

The transfer of grasping skills for novel instances is per-

formed as follows. A latent vector x describing the shape

deformation of the object from the canonical instance is

calculated as explained in Section III-E. This vector constitutes

a test sample of the linear regression, whose inference is

a grasping descriptor cς . Then, cς is transformed into the

observed space. This transformation is performed in two steps.

First, the control poses of the grasping motion are warped

using Eq. (2) replacing S[t] by the translational part and the

rotational vector base of the control poses. Because the warping

process can violate the orthogonality of the orientation, we

orthonormalize the warped orientation. Second, we apply the

rigid transformation Θ defined by the parameters θ.

The resulting transformed control poses oς are expressed

in the frame of the object. Thus, for executing the motion

each of the poses has to be adapted relative to the pose of

the observed object by premultiplying the control poses by the

pose of the object w.r.t. the base of the manipulator. Algorithm

2 summarizes the inference of grasping skills.

IV. SETUP AND EVALUATION

In this section, we evaluate only the grasping skill transfer

because the latent space non-rigid registration method was

already evaluated in [1]. We tested our method on two

categories: Drill a Spray Bottle, containing 13 and 17 instances

respectively. We obtained the object models from two online

CAD databases: GrabCad 1 and 3DWarehouse2. The CAD

models were converted into meshes in order to generate the

input point clouds for our method. They were obtained by

Algorithm 1 Training phase

Input: A set of training shapes in their canonical pose with

corresponding grasping descriptors oς .

1: Select a canonical shape C via heuristic or pick the one

with the lower reconstruction energy.

2: Estimate the deformation fields between the canonical

shape and the other training examples using CPD.

3: Concatenate the resulting set of W matrices from the

deformation fields into a design matrix Y.

4: Perform PCA-EM on the design matrix Y to compute the

latent space of deformation fields x.

5: Transform the grasping descriptors oς into the canonical

space cς .

6: Train the Linear Regressor R : x →c ς .

Output: A canonical shape C, a latent space of deformation

fields L and a trained model for inferring grasping descriptors

R.

1https://grabcad.com/library
2https://3dwarehouse.sketchup.com/
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Algorithm 2 Grasping Skills Inference

Input: Transformation model (C, L), trained regressor R and

observed shape O

1: Use gradient descent to estimate the parameters of the

underlying transformation (x and θ) until the termination

criteria is met. To calculate the value of the energy function,

in each iteration:

- Using the current values of x and θ:

1) Create vector Ŷ and convert it into matrix W.

2) Use Eq. (4) and Eq. (2) to deform C.

3) Apply the rigid transformation Θ to the deformed C.

2: Use the resulting x to infer a grasping descriptor cς inferred

by R.

3: Transform the grasping descriptor into the observed space.

Output: Grasping descriptor in observed space cς .

ray-casting from several viewpoints on a tessellated sphere and

down-sampling with a voxel grid filter.

We use the five-fingered Schunk hand with a total of 9
fully actuated Degrees of Freedom (DoF) and 11 mimic joints.

The experiments were carried out in the Gazebo simulation

environment. The collision model of the finger links were

modeled by capsules using an automatic ROS optimal capsule

generator based on the Roboptim library [28] as shown in

Fig. 6. The inertia tensors of the graspable objects were

approximated using Meshlab. For building the shape latent

spaces, we parametrized CPD with β=1, λ=3 and σ2 = 0.01.

The number of latent variables was set to capture at least

95% of the variance of each class. The grasping motions for

each object in the training set were sampled as described

in Section III-D with a maximum distance of 0.04 m and a

maximum angular deviation of 0.2.

For each category, we select the canonical model manually.

We use cross validation leaving two samples out. We trained six

drill and seven spray bottle grasping transfer models. Because

our method is able to infer category-alike geometries, we also

evaluated our method with partially-observed point clouds. For

this, we generate a single view of the test objects of each cross

validation model. In total, we evaluated the method on 12 fully

observed and 12 partially observed drills and 14 fully observed

and 14 partially observed spray bottles. For each instance, one

Figure 6: Visual and collision model of the robotic hand. At

rightmost both models are displayed simultaneously to show

the goodness of the capsule approximation.

TABLE I
RATIO OF SUCCESSFULLY TRANSFERED GRASPS.

Drill Spray Bottle
Grasp Func. Grasp Grasp Func. Grasp

Fully observed 7/12 4/12 8/14 3/14
Partially observed 6/12 3/12 9/14 6/14

simulation trial was performed because the execution of the

generated motion is fully deterministic in simulation.

From the 52 instances to be grasped 30 were successfully

grasped; that yields a success rate of 57.7%. Note, however,

that a successfully grasped instance in our approach considers

the entire motion, not only the last grasp configuration.

Regarding functional grasps, i.e., the index finger is able

to trigger the tools, 16 instances were successfully grasped

which results in a 32% success rate. The results are presented

in Table I. Compared to the results presented in [22], although

the success rate of our method is lower, our method is able

to handle partially-occluded objects and an inference takes in

average 7 s compared to the 12.6 min which is only suitable

for offline applications. Figure 7 shows for each category two

different—a fully observed and a partially-observed—samples

that were successfully grasped.

Our method was also tested in real-robot experiments. We

created only one latent transformation model for the drill

category using all the 12 available meshes plus the canonical

model. The observed object was inferred from one single

view captured by the Kinect v2 sensor [29]. The tests were

carried out on two different platforms: a UR10 arm and the

CENTAURO robot. The hand was controlled by a PID position-

current cascade controller, such that the joint position controller

defines the desired joint currents. The saturation values of the

current controller together with the PID values of the position

controller were set to provide a certain level of compliance

which contributed mainly at the last stage of the grasping

motion. Using the UR10 robotic arm, our method was able to

grasp two different drills twice without any failure. Similarly,

with the CENTAURO robot, our approach grasped one instance

of a drill twice without any failure (Fig. 8).

A video illustrating our approach is available online3.

A. Discussion

Real experiments with two different robotic arms demon-

strate that our method does not depend on the kinematics

of the arm holding the hand. We assume however that the

kinematics of the arm is able to reach 6D poses in its workspace.

Our method is also agnostic to the robotic hand; a canonical

grasping motion that is suitable to the hand is the only

requirement for applicability.

Most of the grasping motions that failed exhibited a high

deviation with respect to the canonical control poses which

indicates a large variance in the learned transfer model. This

suggests a need for more sample-efficient inference methods

and the need for more training data.

3http://www.ais.uni-bonn.de/videos/RA-L_2018_Rodriguez
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Figure 7: At the leftmost the meshes are shown. For illustration purposes we show additional perspectives of the same single

view of the partially observed objects. The respective point clouds are shown in blue. The inferred instances (green point

clouds) together with the transformed control points that define the motion are also displayed. In order to observe how good

the inference matches the observed points, the mesh of the canonical models is transformed and displayed (green meshes)

together with the observed data (blue points). Finally, the resulting grasped object in Gazebo is also depicted at the rightmost.

Figure 8: Experiments performed with the Centauro robot grasping autonomously a novel instance of a drill.
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V. CONCLUSION

In this paper, we proposed a new approach of transferring

grasping skills between objects within a category that is based

on the knowledge aggregation of different training samples into

a canonical model. Thanks to the learned latent shape space,

our method is capable of completing missing or occluded object

surfaces from partial views. Our method was able to transfer

grasping skills with real robotic platforms from experiences

collected only in simulation. This demonstrates the feasibility

regarding the available sensory data (single-view point clouds)

and runtime of our approach.

For future work, we want to consider more complex cate-

gories that impose higher variations in the joint configuration of

the hand. So, more dimensionality reduction will be expected.

As we realized the reduced number of training samples

limits the presented approach, we start looking into automatic

generation of plausible meshes from the canonical model. We

also want to explore variants of the CPD algorithm in order to

speed our current implementation. Finally, we would like also

to exploit additional sensory modalities such as joint currents

and force-torque sensors.
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Autonomous Dual-Arm Manipulation of Familiar Objects

Dmytro Pavlichenko, Diego Rodriguez, Max Schwarz, Christian Lenz, Arul Selvam Periyasamy

and Sven Behnke

Abstract— Autonomous dual-arm manipulation is an essen-
tial skill to deploy robots in unstructured scenarios. How-
ever, this is a challenging undertaking, particularly in terms
of perception and planning. Unstructured scenarios are full
of objects with different shapes and appearances that have
to be grasped in a very specific manner so they can be
functionally used. In this paper we present an integrated
approach to perform dual-arm pick tasks autonomously. Our
method consists of semantic segmentation, object pose estima-
tion, deformable model registration, grasp planning and arm
trajectory optimization. The entire pipeline can be executed on-
board and is suitable for on-line grasping scenarios. For this,
our approach makes use of accumulated knowledge expressed
as convolutional neural network models and low-dimensional
latent shape spaces. For manipulating objects, we propose a
stochastic trajectory optimization that includes a kinematic
chain closure constraint. Evaluation in simulation and on the
real robot corroborates the feasibility and applicability of the
proposed methods on a task of picking up unknown watering
cans and drills using both arms.

I. INTRODUCTION

Daily-life scenarios are full of objects optimized to fit

anthropometric sizes. Thus, human-like robots are the natural

solution to be used in quotidian environments. In these

scenarios, many objects require two or more grasping af-

fordances in order to be manipulated properly. Such objects

may have complex shapes involving multiple degrees of

freedom (DOF), be partially or completely flexible or simply

be too large and/or heavy for single-handed manipulation, for

instance, moving a table and operating a heavy power drill.

In this paper, we describe an integrated system capable

of performing autonomous dual-arm pick tasks. Such tasks

involve the consecutive accomplishment of several sub-tasks:

object recognition and segmentation, pose estimation, grasp

generation, and arm trajectory planning and optimization.

Each of these subproblems is challenging in unstructured

environments when performed autonomously—due to the

high level of uncertainty coming from noisy or missing

sensory measurements, complexity of the environment, and

modeling imperfection. Thus, designing and combining soft-

ware components which solve these sub-problems into one

integrated pipeline is challenging.

We use semantic segmentation to detect the object. A

segmented point cloud is then passed to the next step of the

All authors are with the Autonomous Intelligent Systems (AIS) Group,
Computer Science Institute VI, University of Bonn, Germany. Email:
pavlichenko@ais.uni-bonn.de. This work was supported by
the European Union’s Horizon 2020 Programme under Grant Agreement
644839 (CENTAURO) and the German Research Foundation (DFG) under
the grant BE 2556/12 ALROMA in priority programme SPP 1527 Au-
tonomous Learning.

Fig. 1. The Centauro robot performing bimanual grasping of a novel
watering can.

pipeline: deformable model registration and grasp generation.

Since instances of the same object category are similar in

their usage and geometry, we transfer grasping skills to novel

instances based on the typical variations of their shape. Intra-

classes shape variations are accumulated in a learned low-

dimensional latent shape space and are used to infer new

grasping poses.

Finally, we optimize the resulting trajectories of the grasp

planner by applying a modified version of Stochastic Trajec-

tory Optimization for Motion Planning (STOMP) [1], which

we refer to as STOMP-New [2]. We extend our previous

work by adding an additional cost component to preserve the

kinematic chain closure constraint when both hands hold an

object. For typical human-like upper-body robots, the dual-

arm trajectory optimization problem with closure constraint

is a non-trivial task due to curse of dimensionality and

severe workspace constraints for joint valid configurations.

We perform experiments to investigate the influence of the

new constraint on the performance of the algorithm.

The main contribution of this paper is the introduction

of a complete software pipeline capable of performing au-

tonomous dual-arm manipulation. The pipeline was demon-

strated with the Centauro robot [3]. Even though the robot

base is quadruped, the upper-body is anthropomorphic with

a torso, two arms, and a head. We evaluate the capabilities of

the designed system on the dual-arm pick task in simulation

and on the real robot (Fig. 1).

II. RELATED WORK

Robotic systems which perform dual-arm manipulation

are widely used for complex manipulation tasks. Many of

such systems are applied in industrial scenarios. For instance,



Krüger et al. [4] present a dual arm robot for an assembly

cell. The robot is capable of performing assembly tasks

both in isolation and in cooperation with human workers

in a fenceless setup. The authors use a combination of

online and offline methods to perform the tasks. Similarly,

Tsarouchi et al. [5] allow dual arm robots to perform

tasks, which are usually done manually by human operators

in a automotive assembly plant. Stria et al. [6] describe

a system for autonomous real-time garment folding. The

authors introduce a new polygonal garment model, which

is shown to be applicable to various classes of garment.

However, none of the previously mentioned works present

a complete and generic pipeline, [4] and [5] do Stria et al.

[6] was proposed a very specific and limited use-case. To the

best knowledge of the authors, there are no significant recent

works, which present a complete autonomous robotic system

for dual-arm manipulation. In the following subsections we

briefly review some of the noticeable works for each of the

core components of our pipeline.

A. Semantic Segmentation

The field of semantic segmentation experienced much

progress in recent years due to the availability of large

datasets. Several works showed good performance using

complex models that require extensive training on large data

sets [7], [8]. In contrast, in this work we use a transfer

learning method that focuses on fast training, which greatly

increases the flexibility of the whole system [9].

B. Transferring Grasping Skills

Vahrenkamp et al. [10] transfer grasp poses from a set

of pre-defined grasps based on the RGB-D segmentation of

an object. The authors introduced a transferability measure

which determines an expected success rate of the grasp

transfer. It was shown that there is a correlation between

this measure and the actual grasp success rate. In contrast,

Stouraitis et al. [11] and Hillenbrand and Roa [12] warp

functional grasp poses such that the distance between point

correspondences is minimized. Subsequently the warped

poses are replanned in order to increase the functionality

of the grasp. Those methods can be applied only in off-line

scenarios, though, because of their large execution time. The

method explained here, on the other hand, is suitable for

on-line scenarios.

C. Dual-Arm Motion Planning

Dual-arm motion planning is a challenging task, for which

intensive research has been carried out. Szynkiewicz and

Błaszczyk [13] proposed an optimization-based approach to

path planning for closed-chain robotic systems. The path

planning problem was formulated as a function minimization

problem with equality and inequality constraints in terms of

the joint variables. Vahrenkamp et al. [14] presented two

different approaches for dual-arm planning: J+ and IK-

RRT. Although the first one does not require an inverse

kinematics (IK) solver, IK-RRT was shown to perform better
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Fig. 2. The Centauro robot. The main components of the upper-body are
labeled.

on both single and dual-arm tasks. In contrast, a heuristic-

based approach was proposed by Cohen et al. [15]. The

method relies on the construction of a manipulation lattice

graph and an informative heuristic. Even though the success

of the search depends on the heuristic, the algorithm showed

good performance in comparison with several sampling-

based planners. Byrne et al. [16] proposes a method con-

sisting of goal configuration sampling, subgoal selection

and Artificial Potential Fields (APF) motion planning. It

was shown that the method improves APF performance for

independent and cooperative dual-arm manipulation tasks.

An advantage of our approach to arm trajectory optimization

is the flexibility of the prioritized cost function which can be

extended to support different criteria, which we demonstrate

in this work.

III. SYSTEM OVERVIEW

In this work we test our software pipeline on a centraur-

like robot, developed within the CENTAURO project1. The

robot has a human-like upperbody, which is mounted on the

qudrupedal base. It is equipped with two anthropomorphic

manipulators with 7 DOF each. The right arm possesses a

SVH Schunk hand as an end-effector, while the left arm

is equipped with a Heri hand [17]. The sensor head has

a Velodyne Puck rotating laser scanner with spherical field

of view as well as multiple cameras. In addition, a Kinect

v2 [18] is mounted on the upper part of the chest. The

Centauro robot is depicted in Fig. 2.

In order to perform an autonomous dual-arm pick tasks

we propose the following pipeline (Fig. 3):

• Semantic Segmentation performed by using RGB-D data

from the Kinect v2,

• Pose Estimation on the resulting segmented point cloud,

• non-rigid Shape Registration to obtain grasping poses,

• and finally, Trajectory Optimization to obtain collision-

free trajectories to reach pre-grasp poses.

IV. PERCEPTION

For perceiving the object to be manipulated, a state-of-

the-art semantic segmentation architecture [7, RefineNet]

1https://www.centauro-project.eu/
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Fig. 3. Simplified diagram of the system, showing the information flow between core components. Orange: sensors; Blue: main components of the
pipeline: Purple: external modules.

is trained on synthetic scenes. Those are composed of a

small number of captured background images which are

augmented randomly with inserted objects. This approach

follows Schwarz et al. [9] closely, with the exception that

the inserted object segments are rendered from CAD meshes

using the open-source Blender renderer. The core of the

model consists of four ResNet blocks. After each block the

features become more abstract, but also lose the resolution.

So, the feature maps are upsampled and merged with the

map from the next level, until the end result is at the same

time high-resolution and highly semantic feature map. The

final classification is done by a linear layer followed by a

pixel-wise SoftMax.

At inference time, also following Schwarz et al. [9], we

postprocess the semantic segmentation to find individual

object contours. The dominant object is found using the

pixel count and is extracted from the input image for further

processing.

The 6D pose of the object is estimated as follows: the

translation component is computed by projecting the centroid

of the object contour into 3D by using the depth information;

the orientation component is calculated from the principle

components on the 3D object points of the object and

incorporating prior knowledge of a canonical model defined

for each category. This initial pose estimate is refined by the

shape space registration described in Sec. V-A.

V. MANIPULATION PLANNING

A. Grasp Planning

The grasp planning is a learning-based approach that

exploits the fact that objects similar to each other can be

grasped in a similar way. We define a category as a set

of models with related extrinsic geometries. In the training

phase of the method, a shape (latent) space of the category

is built. This is done by computing the deformation fields

of a canonical model C towards the other models in the

category. This is carried out by using the Coherent Point

Drift (CPD) non-rigid registration method. CPD provides a

dense deformation field, thus new points can be warped even

after the registration. Additionally, the deformation field of

each object in the training set can be expressed in a vector

whose dimensionality equals the number of points times the

number of dimensions of the canonical model. This mean

that the variations in shape from one object to the other

Observed Instance Reconstructed Object Real ObjectRegistration

Fig. 4. Shape space registration on the watering can category. The method
is able to reconstruct a partially occluded instance containing noise.

can be expressed by a vector of the same length across all

training samples. Thus, subspace methods can be straight-

forwardly applied. Finally, the principal components of all

these deformation fields are calculated by using Principal

Component Analysis - Expectation Maximization (PCA-EM)

which define the basis of the shape space.

Once the shape space is constructed, new instances can be

generated by interpolating and extrapolating in the subspace.

In the inference phase, we search in the latent space in a

gradient-descent fashion for an instance which relates to the

observed model at best. We do this by optimizing a non-

linear function that minimizes a weighted point distance.

An additional rigid registration is also incorporated in the

cost function to account for misalignments. Furthermore, the

latent variables are regularized which has shown to provide

numerical stability. Once the descriptor in the latent space is

known, it is transformed back to obtain the deformation field

that best describes the observation. In this process, partially

occluded shapes are reconstructed. The registration is robust

against noise and misalignments to certain extent [19]. Fig. 4

shows a partially observed instance with noise and the

reconstructed object after the shape registration.

The canonical model has associated control poses that

describe the grasping motion. These control poses are warped

using the inferred deformation field. More details about the

shape space registration can be found in [20]. For bimanual

manipulation we associate individual grasping control frames

to each arm and warp them according to the observed

model. Because each of the control poses is independent,

simultaneous arm motions are possible. The control poses

contain the pre-grasp and final grasp poses.

B. Trajectory Optimization

The grasp planner provides pre-grasp poses for both arms,

the trajectory optimizer plans a collision-free trajectory to

reach them. We use STOMP-New, which showed better



performance in previous experiments [2]. It has a cost

function consisting of five cost components: collisions, joint

limits, end-effector orientation constraints, joint torques and

trajectory duration. The input is an initial trajectory Θ which

consists of N keyframes θi ∈ R
J , i ∈ {0, . . . , N−1} in joint

space with J joints. Normally, a naïve linear interpolation

between the given start and goal configurations θstart and

θgoal is used. The start and goal configurations are not

modified during the optimization.

Since the optimization is performed in joint space, extend-

ing the algorithm to use two arms instead of one is straight-

forward. We extended the approach to support multiple end-

effectors (two in the context of this work), so trajectories of

two independent arms are simultaneously optimized.

However, for moving an object grasped with two hands, a

kinematic chain closure constraint has to be satisfied. Thus,

the following term qcc(., .) is added to the cost function:

q(θi,θi+1) =qo(θi,θi+1) + ql(θi,θi+1) + qc(θi,θi+1)

+qd(θi,θi+1) + qt(θi,θi+1) + qcc(θi,θi+1),
(1)

where q(θi,θi+1) is a cost for the transition from the

configuration θi to θi+1. The cost function now consists

out of six terms, where the first five are coming from our

original implementation of STOMP-New. By summing up

costs q(·, ·) of the consecutive pairs of transitions θi,θi+1

of the trajectory Θ, we obtain the total cost.

The new term qcc(·, ·) for the kinematic chain closure

constraint is formulated as:

qcc(θi,θi+1) =
1

2
max

j
qct(θj) +

1

2
max

j
qco(θj), j ∈ {i, . . . , i+ 1}

(2)

where qct(·) penalizes deviations in translation between

the end-effectors along the transition and qco(·) penalizes

deviations of the relative orientation of the end-effectors.

Given two end-effectors, eef1 and eef2, the initial trans-

lation tdesired ∈ R
3 between them is measured in the first

configuration θ0 of the trajectory. Then, for each evaluated

configuration θj , the corresponding translation tj between

eef1 and eef2 is computed. The deviation from the desired

translation is thus defined as: δt = |tdesired − tj |. Finally,

we select the largest component tdev = max
x,y,z

δt|δt = 〈x, y, z〉

and compute the translation cost:

qct(θj) =

{

Cct + Cct · tdev if tdev ≥ tmax

tdev
tmax

, otherwise
, (3)

where tmax is the maximum allowed deviation of the transla-

tion component and Cct ≫ 1 is a predefined constant. Thus,

qct ∈ [0, 1] if the deviation of the translation is below the

allowed maximum and qct ≫ 1 otherwise.

Similarly, we define the term qco(·) for penalizing de-

viations in the orientation. The initial relative orienta-

tion odesired ∈ R
3 between eef1 and eef2 is calcu-

lated in the first configuration θ0. For each configuration

θj , the corresponding relative orientation oj is measured.

The deviation from the desired orientation is computed

as: δo = |odesired − oj |. We select the largest component

(a) (b)

Fig. 5. Comparison of the trajectories obtained with/without kinematic
chain closure constraint. Red: start configuration; Yellow: goal configura-
tion; Green: paths of the end-effectors. (a) Closure constraint enabled. The
robot has to follow the kinematically difficult path. (b) Closure constraint
disabled. The arms can be moved easily to the sides of the robot.

odev = max
r,p,y

δo|δo = 〈r, p, y〉 and compute the orientation

cost:

qco(θj) =

{

Cco + Cco · odev if odev ≥ omax

odev
omax

, otherwise
, (4)

where omax is the maximum allowed deviation of the ori-

entation component and Cco ≫ 1 is a predefined constant.

Extending the algorithm with this constraint allows to op-

timize trajectories, maintaining the kinematic chain closure

constraint, and, hence, plan trajectories for moving objects

which are held with two hands.

VI. EVALUATION

First, we present the evaluation of the arm trajectory

optimization alone. In the latter subsection, we evaluate the

performance of the developed pipeline by picking a watering

can with two hands in simulation. Finally, we present the

experiments performed with the real robot: dual-arm picking

of watering can and drill.

A. Trajectory Optimization

Experiments were performed using the gazebo simulator

with the Centauro robot. Both 7 DOF arms were used si-

multaneously, resulting in a total of 14 DOF. We performed

the experiments on an Intel Core i7-6700HQ CPU, 16 GB of

RAM, 64 bit Kubuntu 16.04 with 4.13.0-45 kernel using ROS

Kinetic. The algorithm ran on a single core with 2.60 GHz.

We investigate how the introduction of the close chain

kinematic constraint influences the performance of the al-

gorithm. We compared the performance of the algorithm

with and without the constraint in an obstacle-free scenario,

where the robot had to lift both arms upwards (Fig. 5). We

solved the problem 50 times with enabled/disabled closure

constraint, each. The time limit for the algorithm was set to

10 s. The obtained runtimes and success rates are shown in

the Table I.

When the algorithm performs optimization without closure

constraint, the runtime is relatively short with a very small

standard deviation and 100% success rate. On the other

hand, with enabled closure constraint, the runtime grew

significantly by 1267% and the success rate dropped to 83%.



Fig. 6. The Centauro robot lifting a long bulky bar. As the bar is laying on the wrists unsecured, not only the closure constraint has to be preserved, but
also the orientation of the end-effectors has to remain the same during the whole trajectory.

TABLE I

COMPARISON OF THE AVERAGE RUNTIME AND SUCCESS RATE

WITH/WITHOUT CLOSURE CONSTRAINT.

Without closure constraint With closure constraint

Runtime [s] 0.34±0.01 4.31±2.42

Success rate 100% 83%

Runtime growth — 1267%

This happens because the space of valid configurations is

largely reduced when enforcing the closure constraint and

the sampling-based algorithm struggles to converge to a valid

solution. This also explains the large standard deviation for

the case when the closure constraint is enabled. In Fig. 7 the

error between desired and actual pose of the end-effectors,

observed during one of those trajectories, is shown.

We also demonstrate the optimization with closure con-

straints enabled for a practical task. The robot has a long

bulky bar laying on its wrists (Fig. 6 (a)) and the task is to

lift it up. Since the bar is not secured in any way, it is not

only necessary to preserve the closure constraint, but also to

maintain the exact orientation of the end-effectors along the

whole trajectory (Fig. 6).

B. Dual-Arm Picking in Simulation

We evaluate the proposed system by picking a watering

can with two arms in a functional way, i.e., that the robot

can afterwards use it. The experiments were performed in

the Gazebo simulator with the Centauro robot. To speed up

the simulation, only the upper-body was actuated. Moreover,

Fig. 7. Error between desired and observed end-effectors relative pose for
trajectories shown in Fig. 5.

TABLE II

SUCCESS RATE OF PICKING WATERING CANS FROM THE TEST SET AND

PERFORMANCE OF THE TRAJECTORY OPTIMIZATION METHOD.

Success rate
(attempts to solve)

Traj. opt. runtime [s]
Success rate

Can 1 75% (4)
0.9±0.24

100%
Can 2 100% (5)
Can 3 60% (3)

the collision model of the fingers were modeled as primitive

geometries: capsules and boxes. The laser scanner and the

RGBD sensor were also incorporated in the simulation. We

trained the semantic segmentation model using synthetic

data. We used 8 CAD models of the watering can to render

400 frames. Additional training data with semantic labeling

is obtained by placing the frames onto multiple backgrounds

and generating the ground truth labels.

For constructing the shape space we define a training

set composed of the same watering cans used to train the

semantic segmentation model. The test set consisted out of

three different watering cans. For the registration, the objects

were represented as point clouds generated by ray-casting

operations on meshes obtained from 3D databases. The shape

space contained 8 principal components.

The task of the experiment is to grasp and to lift upwards

all three cans from the test set. Each trial starts with the robot

standing in front of the table, on which the watering can is

placed. The arms of the robot are located below the surface of

the table, so that a direct approach (straight line) to the object

will result in a collision. Each can had to be successfully

grasped three times with different orientation so that the

Fig. 8. Dual-arm trajectory for reaching pre-grasp poses. Yellow: initial
pose; Black and grey: goal pose; Green: paths of the end-effectors. The
arms have to retract back in order to avoid collisions with the table.



(a) (b) (c) (d) (e)

Fig. 9. Centauro performing a dual-arm functional grasp of the watering can in simulation. (a) Initial pose. (b) - (c) Reaching the pre-grasp pose. (d)

Can is grasped. (e) Can is lifted.

(a) (b) (c)

Fig. 10. Three cans from the test set successfully grasped.(a) - (c) Can 1,
Can 2, Can 3, respectively. Note that all the cans have different geometry.

task is considered solved. In this manner, the can is rotated

around its Z-axis for +0.25, 0 and -0.25 radians. In order to

evaluate the performance of the non-rigid registration against

misalignments, noise in range ±0.2 radians was added to the

yaw component of the 6D pose. The trials were performed

until each of the three grasps succeeded once. Obtained

success rates and measured average runtime of the trajectory

optimization method are presented in Table II.

Our system solved the task Can 2 with no issues, whereas

Can 1 and especially Can 3 were more difficult. For Can

1, there was a minor misalignment of the grasp pose for

the right hand, which did not allow us to grasp the can

successfully. Can 3 had the most distinctive appearance

among the cans in our dataset, that is why it caused the

most difficulties. During the experiment we often had to run

the non-rigid registration several times because it was stuck

in local minima. STOMP-New showed consistent success

rate and satisfactory runtime of around one second. Typical

trajectories for reaching pre-grasp poses are shown in Fig. 8.

The Centauro robot performing the experiment with Can 2

is depicted in Fig. 9. All three cans forming our test set,

successfully grasped, are shown in Fig 10.

C. Real-Robot Experiments

On the real Centauro robot we performed the same ex-

periment, as described above for a single orientation of the

watering can. The pipeline was executed five times in attempt

to grasp the can with two hands in a functional way. The

method succeeded four times out of five. We measured the

average runtime for each component of the system as well

as the success rate (Table III).

We do not provide the success rate for the pose estimation,

since the ground truth was not available. Consequetly, it

is hard to assess the success rate of grasp generation as it

TABLE III

AVERAGE RUNTIME AND SUCCESS RATE OF EACH COMPONENT OF THE

PIPELINE.

Component Runtime [s] Success rate

Semantic segmentation 0.74 100%

Pose estimation 0.12 —

Grasp generation 4.51 ± 0.69 —

Trajectory optimization 0.96 ± 0.29 100%

Complete pipeline 6.27 ± 0.98 80%

may fail due to the previous step of the pipeline. Trajectory

optimization method shown a consistent average runtime of

around 1 s and a 100% success rate. Overall, the pipeline took

around 6 s on average with a success rate of 80%. One of

the attempts failed on the stage of grasping the can, because

the approaching (goal) pose of the trajectory optimizer was

not close enough to the object which resulted in a collision

between the hand and the watering can while reaching the

pregrasp pose. Consequently, the object moved away from

the estimated pose. This suggests that the approaching pose

given to the trajectory optimizer should be closer to the

object.

In addition to the watering can, the Centauro robot also

grasped a two-handed drill to demonstrate that our pipeline

can be applied to different types of objects. The process of

grasping and lifting both tools is shown in Fig 11. Footages

of the experiments can be found online2.

VII. CONCLUSIONS

We have developed an integrated approach for autonomous

dual-arm pick tasks of unknown objects of a know category.

The manipulation pipeline starts with the perception mod-

ules, which are capable of segmenting the object of interest.

Given the segmented mesh, we utilize a non-rigid registration

method in order to transfer grasps within an object category

to the observed novel instance. Finally, we extended our

previous work on STOMP in order to optimize dual-arm

trajectories with kinematic chain closure constraint.

We performed a set of experiments in simulation and with

the real robot to evaluate the integrated system. The experi-

ment on trajectory optimization showed that our method can

solve the tasks of planning for two arms reliably and fast.

However, with introduction of the closure constraint, the

2Experiment video: http://www.ais.uni-bonn.de/videos/

Humanoids_2018_Bimanual_Manipulation



(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Fig. 11. Centauro performing a dual-arm functional grasp of the watering can and a two-handed drill. (a) Initial pose. (b) - (c) Reaching the pre-grasp
pose. (d) Can/drill is grasped. (e) Can/drill is lifted.

runtime grew significantly. Nevertheless, we demonstrated

that the method is capable of producing feasible trajectories

even under multiple complex constraints. In the simulation

experiment, the robot successfully grasped three previously

unseen watering cans with two hands from different poses.

On real-robot experiments, our pipeline successfully

grasped and lifted several times a watering can and a

two-handed drill. These experiments demonstrated that our

system can be successfully applied to solve tasks in the real

world in an on-line fashion.
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