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Executive Summary

This deliverable describes our approach to object and workspace perception, one essential func-
tionality in the CENTAURO system, consisting of several core components. It covers the fol-
lowing aspects:

• sensor preprocessing,

• detection of objects,

• semantic segmentation,

• tracking of objects,

• object classification,

• object pose estimation, and

• ego-pose in the workspace.

The workspace perception builds the finest scale map of the three-level mapping system in
CENTAURO and extends the intermediate scale map from the navigation module. The object
perception extracts data about the objects in the workspace. Both perception modules together
provide the required data to the modules for visualization and simulation of the world model as
well as for manipulation planning and arm motion generation.
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1 Introduction
This CENTAURO Deliverable D6.2: Object and workspace perception is a report summarizing
the realized methods for perception of the manipulation workspace of the CENTAURO robot,
including object detection and tracking.

It covers activities from Task T6.1: Object and workspace perception, which aims to develop
robot perception for bottom-up scene segmentation into objects, for learning models of specific
objects, for detecting them, and estimating their pose.

1.1 Robot Platform
The CENTAURO robot will carry a set of image and range sensors for perceiving its environ-
ment, both for the purpose of navigation, while moving, and for carrying out various assigned
manipulation tasks. The detailed specification of the robot platform is still in progress in WP2,
but it is envisioned to be similar to the illustration in Figure 1, left.

3D laser scanner

Cameras

4 DOF leg

2 DOF wheels

Base with CPU
and battery

7 DOF arm

8 DOF gripper

WiFi router

Figure 1: Left: rendering of the CENTAURO robot concept using power tools. Right: The mo-
bile manipulation robot Momaro [24], serving as a test platform for navigation and manipulation
tasks.

The current design (described in more detail in Deliverables D2.1 and D2.2) can be seen
as adaptation of existing robots from other projects to the requirements of the CENTAURO
project. Already available at partner UBO is the mobile manipulation robot Momaro [24],
serving as a test platform for navigation and manipulation tasks, see Figure 1, right. It has a
hybrid mobile base consisting of four pairs of steerable wheels that are connected to the main
body by 3DoF legs. Its anthropomorphic upper body has two 7DoF arms that end in 8DoF four
finger grippers. The Momaro robot is equipped with a 3D laser scanner, seven color cameras,
an RGB-D camera, and a fast CPU.

1.2 Sensor Platform
For manipulation tasks the robot is expected to be stationary, but sensors as well as objects
in the environment may still be moving relative to the robot platform. Currently, the sensors
planned for the CENTAURO robot head include
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• One Kinect, version 2. This is an RGB-D sensor, which means that it provides an im-
age that contains both a color measurement and a depth measurement for each pixel.
Equipped with pan-tilt mechanism.

• Three Point Grey Blackfly 23S6C-C wide-angle color cameras, mounted vertically with
minimal overlap and total field of view of about 100×200 degrees.

• One Velodyne VLP-16, a lidar used mainly for navigation. By rotating the sensor around
the vertical axis, a spherical field of view can be achieved.

In addition to the sensors on the head, two Intel SR300 RGB-D cameras are planned to be
mounted on each manipulator arm. A potential source of error in the sensor setup could be
interference between the Kinect and the Velodyne VLP-16, which both measure time-of-flight
using infrared light pulses. However, the Kinect uses 860nm wavelength with a optical band-
width of 45nm [2] while the Velodyne uses 903nm wavelength [28]. The potential interference
should thus be negligible. An intermediate stage of development of the sensor platform for the
CENTAURO head, manufactured by partner LiU, is shown in Figure 2.

Figure 2: A prototype of the sensor head to be used in the CENTAURO project. Left: the lidar
will later be located in place of the Kinect 2 RGB-D camera (top), the Kinect 2 in place of the
center Point Grey camera (below), and the center camera further down, nearly between the two
side cameras. The Point Grey cameras will be pointing more downwards. Right: optional setup
with Kinect 2 moved down and LED lamp for illumination in dark areas.

These sensors have been chosen since they provide the visual information necessary for
solving the tasks described in project deliverable D8.1 CENTAURO Evaluation Concept. With
respect to object and workspace perception, the Kinect v2 and the three color cameras are pri-
marily relevant. From the raw measurements captured by these sensors, objects and workspace
information need to be extracted in order for the different tasks of the robot to be carried out.
For workspace perception, also navigation data from the local navigation map (cf. D5.1) may
be used for initialization.

Several modules for processing of visual data will be needed and, below, those which relate
to perception of object and workspace are outlined in Figure 3. The output from the visual pro-
cessing comprises colored 3D data registered in a joint coordinate system and detected objects
including their pose, to allow visualization and simulation of world models as intended in WP4
as well as manipulation planning and arm motion generation, cf. D6.1.
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Figure 3: Block diagram of the suggested processing pipeline that includes the functionali-
ties mentioned here. The modules (drawn as boxes) establish core components and auxiliary
functionalities of the system.

1.3 Visual Processing Pipeline
The visual processing pipeline is illustrated in Figure 3. In this figure, the modules (drawn as
boxes) establish core components and auxiliary functionalities of the system.

The sensors listed in the previous section cannot be expected to produce perfect data, for
example in terms of accuracy, certainty or range. In particular, this is the case for range sensors,
where a pixel can have a missing or unreliable range measurement due to specularities, or a
point cloud may be missing parts of the scene due to occlusion. Parts of the performed work
addressed also this issue, for example by extending the measurement range and increasing
the accuracy of the Kinect sensor (cf. Sec. 2.2).

Each of the visual sensors outputs a high bandwidth data stream. Therefore, a primary step
to achieve the objectives of object and workspace perception is to reduce the data, which will
be done along two processing streams that both are facilitated by detecting the various objects
of interest for the task. The objects can be specific object categories predefined for the task,
for example tools or other objects that should be manipulated, or they could be general objects
that are moving, have a particular color or shape, or somehow deviate from the background.
The first processing stream involves further object processing for the purpose of manipulation,
which can be focused only on these objects once they are detected. The second stream subtracts
the objects from the sensor data, leaving the background that instead forms the workspace in
which the object manipulation takes place.

Once an object of interest has been detected, its own motion in combination with the motion
of the sensors makes it likely that the object will appear at different positions relative to the
sensors over time. This means that the perspective may vary over time, for example in terms
of position in an image, the attention has to be shifted from where the object was first detected.
Therefore, it is essential to track the position of the object relative to the robot image sensors
over time.

Not only the image- and 3D-position of the object may change over time, also its 3D-
orientation relative to the robot platform must be known to allow manipulation of the object.
Therefore, processing of sensor data to produce a full 3D-pose estimate of an object is part
of the system. In most cases, classification of objects into different types or categories is a
further relevant step to be included into the processing pipeline in order to facilitate planning of
manipulation.

Mathematically, object pose estimation and pose estimation in the workspace are the same
problems. Thus techniques similar to the object case are also applied to the workspace part
of the sensor stream. By registering the pose of the current workspace to a local map of the
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robot’s closest surrounding, this map can be extended, refined, and updated. This map will be
visualized to the human operator and can be used in 3D world simulation of planned actions
and their effects, cf. WP4 Modeling and Simulation.

The following sections present an overview of the functionalities mentioned above. The
technical and scientific details of the documented contributions can be found in the papers in
the Appendix.

2 Processing of RGB-D Data
Although modern RGB-D sensors provide data in a very convenient way, they require appro-
priate calibration and additional improvements to achieve high densities of point clouds.

2.1 Calibration
Since there are multiple sensors and measurements from two or more of them may be combined
in the subsequent processing, it is important that they are calibrated. The calibration can be
either relative to a common reference coordinate system of the robot platform, or between a
pair of sensors if their data streams are to be fused.

We have developed a method to calibrate the 6D transformations of color cameras relative
to the measurements of the 3D laser scanner, based on matching of image brightness to laser
reflectance. We define an objective based on mutual information (MI) between the intensity
images from the camera and laser intensity values. To find the optimal transformation, the
objective is then optimized using hyperopt [3]. Using the calibrated transformation, we can
produce colored point clouds, similar to RGB-D sensors, but suitable for outdoor use (Figure 4).
Coloring points makes teleoperation based on a head mounted display (HMD) interface more
intuitive.

Figure 4: Result of our camera-to-laser calibration. The intensity laser measurements (middle)
are correctly colorized with the corresponding RGB image (left) to obtain a colorized point
cloud (right).

2.2 Improving Time-of-flight Ranging
We use a Microsoft Kinect v2 as the primary sensor on the robot platform for object and
workspace perception. The Kinect v2 is a RGB-D sensor, providing both color and depth im-
ages, where the depth is measured using time-of-flight technology. Points from these images
can be projected out into 3D space, constructing colored point clouds, which could be used to
interpret the geometry of the environment and its objects.

2 PROCESSING OF RGB-D DATA 8
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However, noise in the depth measurements causes the point clouds to contain outliers and
reduced point density. The reduced point density is due to outlier rejection performed by the
depth decoding algorithm. These flaws occur more commonly in large depth scenes, causing
the existing Kinect v2 drivers to limit the range of the sensor to 8 meters.

Hence, by making the depth decoding algorithm less sensitive to noise, not only would we
acquire denser point clouds but also be able to use the sensor for larger depth scenes. In our
ECCV 2016 paper [18] we introduce a new depth decoding algorithm that has an improvement
of about 52% more valid points in large depth scenes compared to the existing methods in the
Microsoft Kinect SDK and the open source libfreenect2. A brief description of our algorithm is
presented below, while more details can be found in the full paper included in the appendix.

Time-of-flight sensors, such as the one in the Kinect v2, measure the phase shift between
a received and an emitted amplitude modulated light signal. The phase shift depends on the
distance to the 3D point were the emitted signal is reflected before returning to the camera.
From the phase shift φ the distance d can be calculated as

d =
cφ

4πfm
, (1)

where c is the speed of light, and fm is the used modulation frequency of the light signal.
However, since the signal has a periodic modulation the obtained depth is ambiguous for

environments with depths larger than c/(2fm). The procedure for extending the range were
the phase measurements are unambiguous is called phase unwrapping. Phase unwrapping is
desirable since it enables the sensor to perceive larger depth scenes. One way of performing
phase unwrapping is by combining phase measurements from multiple signals with different
modulation frequencies. In the Kinect v2 case three different frequencies are used, setting the
unambiguous range to 18.75 meters. This is illustrated in Figure 5.

Our main contribution to the improvement of the depth decoding procedure of the Kinect v2
is how the phase unwrapping is performed. The open source driver libfreenect2, which is based
on a disassembly of the Microsoft Kinect SDK, uses a greedy approach to unwrap the phase
measurements. This is described in Section 2.2 in [18]. Our method instead considers a set of
multiple hypotheses for the phase in each pixel. We then select the hypothesis with the largest
kernel density estimate (KDE) over all hypotheses in a spatial region, see Section 3 in [18].
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Figure 5: Wrapped phases for Kinect v2, in the range 0 to 25 meters. The dashed line at 18.75
meters indicates the common wrap-around point for all three phases.
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Additionally, we utilize the KDE as a confidence measure for detecting and rejecting bad
pixels. While libfreenect2 performs outlier rejection using several steps, where each step has its
own threshold and set of parameters to be tuned, our outlier rejections is performed by a single
threshold to the KDE.

Qualitative comparisons on a large depth scene, an outdoor scene, and a basement scene
from CENTAURO are shown in Figure 6. We see a clear improvement for our method compared
with libfreenect2 for all types of scenes.

libfreenect2 Proposed

Figure 6: Single frame output comparisons. Top: scene with greater than 18.75m depth range,
middle: outdoor scene, bottom basement. Left: libfreenect2, Center: proposed method. Right:
corresponding RGB image. Depth measurements are shown in gray scale were bright means far
and dark means near. Pixels suppressed by outlier rejection are shown in green. The proposed
method has more valid depth points than libfreenect2 resulting in a denser and more well defined
depth scene. While the suppressed areas are clean from outliers for the proposed method, the
libfreenect2 image is covered in salt and pepper noise. Note also that the increase of density is
more significant under sunlight conditions.

For quantitative assessment we evaluated the correctness of the phase unwrappings to ground
truth depth data. The ground truth data was constructed by fusing multiple views of the same
scene, seen in Figure 7. We then compared the output depth from the different algorithms from
the same view to the fused depth image to count the number of inliers. Since the depth was
limited in the Microsoft Kinect SDK we also included a comparison on a scene were all depths
were within the limit.

2 PROCESSING OF RGB-D DATA 10
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kitchen lecture

Figure 7: Unwrapping ground truth for the evaluation datasets. Top row: ground truth depth
maps. Green pixels are suppressed, and not used in the evaluation. Bottom row: corresponding
images from the RGB camera. Taken from [18].

The results shown in Figure 8 demonstrate that our method outperforms libfreenect2 and
Microsoft. In the large depth lecture scene the proposed method has a 73% inlier rate at a 1%
outlier rate, which is an relative improvement of 52% over libfreenect2.
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Figure 8: Inlier and outlier rate plots. Each point or curve is the average over 25 frames. The
read, green and blue curves shows the performance of our method, depending on the threshold
applied the KDE, with different parameter settings. The parameter r defines the maximum
distance from the center pixel in a spatial region, I is the number of hypotheses considered for
each pixel in the KDE and d is the depth threshold. The center plot kitchen (depth limited)
shows the result from were the depth was limited for all three methods.

We also applied the algorithm to the Kinect Fusion implementation KinFu in the Point Cloud
Library [23]. As can be seen in Figure 9, the scans using our method have a higher quality,
generating models with fewer outlier points and consistently more complete scene details.
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libfreenect2 Proposed

Figure 9: Meshes of lecture (top) and the outdoor (bottom) scenes from KinFu. See Figures
7 and 6 for corresponding RGB images of the lecture and outdoor scene respectively. Left:
unwrapped with libfreenect2. Right: unwrapped with the proposed method.

3 Detecting Objects in the Workspace
The identification of objects in the scene, thus separating workspace and objects of interest, can
be achieved in different ways, depending on the assumptions that are made. If the object classes
and appearances are known before hand, or given from annotation, supervised learning can be
used.

3.1 Dataset Collection and Annotation
Almost all current methods for object detection and semantic segmentation are based on su-
pervised learning techniques which require labeled training data. Even though there is a large
number of public datasets, the data does not represent scenes or objects that are expected to
be found in a CENTAURO-like environment. To nevertheless enable high-quality object and
workspace perception, we have collected and annotated our own dataset. At the time of this
deliverable, there are 129 annotated RGB-D images, six of which contain no objects and serve
as background. The data were captured using the Kinect v2 sensor by UBO in its lab. As a
starting point, we chose 6 relevant object categories, including wrench, drill, clamp, stapler,
extension box and door handle. The annotation is performed manually by outlining each object
with a polygon and assigning it the corresponding class. Our annotation tool and three example
close-ups are shown in Figure 10.

3 DETECTING OBJECTS IN THE WORKSPACE 12
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Figure 10: Our annotation tool (left) and three exemplar cropped frames from the captured
dataset (right).

We will collect and annotate more data when needed. Moreover, we will explore the option
of generating synthetic data both using image based rendering and CAD models.

3.2 Object Detection
The sensors on the robot platform provide the system with a large amount of data in the form of
image and point cloud representations of the surrounding environment (more than 0.5 gigabyte
per second). In order for the robot to perform tasks, such as bimanual manipulation using human
tools, we need to detect and extract relevant objects and structures from the sensor data.

3.2.1 YOLO

There is a rapid development in image object detection and the advances are generating faster
and more accurate methods. At this time, the state of the art methods are machine learning
algorithms based on Faster Regional CNN [20]. In the Faster R-CNN methods, a R-CNN
is merged with a regional proposal network, while in previous work these two modules where
separated. This results in improved performance as well as increased speed, running at 5 frames
per second [20]. Although the improvements in the Faster R-CNN methods looks promising,
it is still unsuitable for real-time processing that is required in robotic systems such as the
CENTAURO robot platform.

One relatively recent method for object detection is YOLO (You Only Look Once) [19].
It accomplishes multiple object detection and classification, not far from the state of the art
methods, in 45 frames per second on a Titan X GPU [19]. Examples of the output produced by
the YOLO system is shown in Figure 11, presenting a bounding box for each detected object in
an RGB image.

The YOLO system consists of a Convolutional Neural Network that divides the input image
into a grid. Each grid cell predicts two bounding boxes with conditional probabilities for all pre-
trained classes along with a confidence for each bounding box. The bounding boxes with the
highest combined confidence and class probabilities are then selected as the output predictions.
For more details, see [19].

3 DETECTING OBJECTS IN THE WORKSPACE 13
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Figure 11: Output images from the YOLO system. Left: A dog, a bike and a car is detected
simultaneously and at the same time marking them with bounding boxes. The image is taken
from [19]. Right: Output image from a disastrously disorganized basement. The YOLO system
detects a chair and a bicycle.

A C implementation of YOLO can be found at http://pjreddie.com/yolo/. The
net is trained on the PASCAL 2012 dataset [8] with the ability to detect the following 20 Pascal
object classes:

• person
• bird, cat, cow, dog, horse, sheep
• airplane, bicycle, boat, bus, car, motorbike, train
• bottle, chair, dining table, potted plant, sofa, TV/monitor.

For CENTAURO, further object classes such as hoses, power-cords, tools, and valves are
relevant. To use these classes, the network needs to be retrained on sufficiently large data sets
yet to be acquired. A first quantitative evaluation of the retrained network is planned to be part
of Deliverable D8.2.

3.2.2 DenseCap

As an alternative, we investigate an object detection approach based on the DenseCap net-
work [14]. DenseCap approaches the problem of dense captioning, i.e. providing detailed tex-
tual descriptions of interesting regions (bounding boxes) in the input image. Figure 12 shows
the general architecture of the DenseCap network. The underlying CNN was pretrained on the
ImageNet [22] dataset. Afterwards, the entire pipeline was trained end-to-end on the Visual
Genome dataset [16].

While the textual descriptions are not interesting for CENTAURO, the network provides
high-quality ranked object proposals with corresponding descriptive features. In order to apply
the network to object detection, we add an additional soft-max classification layer and train in
on the collected dataset, described in Sec. 3.1 The 123 frames that contain objects are split into
109 training frames, and two times seven frames for validation/testing. The pretrained network
is then finetuned end-to-end on the training split. Figure 13 shows preliminary results on the
test split. In our experiments, the method copes well with cluttered backgrounds. We achieve
a mean average precision (mAP) of 80.92% over five different intersection over union (IoU)
thresholds (see Figure 14). The method is currently based on RGB data. Ways to include depth
measurements—which will be available in the CENTAURO system—are being investigated.

3 DETECTING OBJECTS IN THE WORKSPACE 14
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Figure 12: Architecture of the DenseCap detection system. Adapted from [14].

Figure 13: Object detection based on the DenseCap network. The top detections up to the first
object hypothesis classified as non-object are shown with corresponding labels and soft-max
confidences.
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Figure 14: Average precision of the DenseCap object detector over different intersection over
union (IoU) thresholds. The mAP is marked with a horizontal line.
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3.3 Semantic Segmentation
The output of an object detector is typically a bounding box that encloses the object of inter-
est. While this representation is compact and localizes the object sufficiently well for visual
recognition, it is not precise enough for manipulation tasks, where the robot has to interact with
the physical world. Therefore, in addition to detecting objects in the scene, we also perform
pixel-wise segmentation, providing for each pixel the most likely object class.

To that end, we adapt our previous work [12] to the scenario at hand. The method employs
a 6-layer fully convolutional neural network (CNN) similar to the OverFeat architecture [25].
The full network architecture is illustrated in Figure 15. As a first step, low-level features are
extracted from the captured RGB-D images using a set of filters that was pretrained on ImageNet
[21]. We then finetune the network to CENTAURO-related scenes by training the last three
layers of the network. To achieve that, we use the same dataset as in Section 3.2.2. Figure 16
shows such a typical scene along with our segmentation result. A quantitative evaluation on the
test set yields 98.8% global pixelwise accuracy, which is the ratio of correctly classified object
pixels, and 96.9% average per-class accuracy.

Figure 15: Our network architecture for semantic object segmentation.

(a) RGB (b) Depth (c) Segmentation

Figure 16: Example of our pixel-wise semantic segmentation in a typical setting.

In future, we will also integrate additional geometric features such as height above ground
or local normal orientation [10] to further improve the performance. Moreover, we will develop
a method generating synthetic training data from both real and rendered images to reduce the
burden of manual annotation.

3 DETECTING OBJECTS IN THE WORKSPACE 16
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4 Object Tracking
If the CENTAURO robot or its manipulator-mounted cameras are moving, it can be computa-
tionally less expensive to track an already detected object of interest than to repeatedly re-detect
it. Given a bounding box provided by the detector, a visual tracker follows the object as it moves
around in the camera view.

Recently, object trackers based on discriminative correlation filters (DCF) have shown very
good performance in standard benchmarks and competitions [17, 29]. This kind of tracker
employs regression to create an optimal correlation filter and is robust against changes in object
appearance. The appearance can be represented by any type of features, like pixel gray values
or deep convolutional neural network activations, alone or in combination.

These methods require that all features are sampled in a common coordinate system. This
complicates the fusing of features, whether from neural network activations (also known as
deep features), from pixels in multiple-sensor cameras such as the Kinect or indeed even from
different cameras altogether. The traditional approach is to resample all image features to one
common resolution, but this strategy also adds to the computational and memory cost and can
introduce artifacts. To counter this, we have developed a DCF-based visual object tracker for-
mulated with continuous rather than discrete filters, where samples are implicitly, rather than
explicitly, interpolated [6].

We evaluated our tracker, named the Continuous Convolution Operator Tracker (C-COT), on
the Object Tracking Benchmark of 2015 (OTB-2015) [29]. One suitable performance measure
is the bounding box overlap, defined as

b =
|BGT ∩BT|
|BGT ∪BT|

, (2)

where BGT and BT represent the ground-truth and tracker-estimated bounding-boxes, |BGT ∩
BT| is the area of their overlap and |BGT ∪ BT| is the area of their union. Consequently, b = 1
when the overlap is perfect and b = 0 when the bounding-boxes do not overlap at all. b is
aggregated over multiple video frames to form the overlap precision (OP) measure. This is the
fraction of images in a sequence where b exceeds a threshold t ∈ [0, 1]. Plotting the OP as a
function of t, yields the tracker success-rate.
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Figure 17: Left: The success rate on the OTB-2015 of our current tracker and nine other state-
of-the-art contenders. Right: A frame from a video sequence in OTB-2015, tracking a small
hand-held object (a soda can). The tracker bounding box is drawn in green.
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The success-rates of our C-COT tracker and nine other methods are shown in Figure 17
where it comes out on top, as ranked by the area under the curve (AUC). The AUC is reported
in the legend. In this evaluation we compared the best trackers currently available. For example,
the DeepSRDCF tracker which was developed by LiU last year, won the OpenCV Vision Chal-
lenge of 2015 in the tracking category and placed second in the 2015 Visual Object Tracking
Challenge, being the best DCF-based method. Tracking in CENTAURO scenarios is illustrated
in Figure 18, showing frames where the method tracks an industrial robot and a valve.

In addition to tracking whole objects, we have adapted C-COT to track patches of grayscale
image pixels with sub-pixel precision, in much the same way as the classic and widely used
Kanade-Lucas-Tomasi (KLT) feature tracker. In the CENTAURO project, this may be employed
in both structure-from-motion 3D reconstruction of a workspace as well as estimating vehicle
motion during navigation.

We tested the tracker and compared it with the KLT and the MOSSE object tracker, on
the MPI Sintel dataset. This is a suite of 23 short sequences from the 3D-animated movie
”Sintel”, featuring dynamic scenes, lighting, motion blur and most importantly ground-truth
optical flow. In addition, we tested a variant of our tracker (named Ours-FF in the legend)
that only remembers the target appearance from the previous frame, rather than continuously
adapting to the appearance changes from the first frame in each video sequence.

The comparison is based on the estimated endpoint-error (EPE) of each tracked point in
every frame in the dataset. The EPE is the Euclidean distance between the tracked point and
its corresponding ground-truth location. Tracked points with an EPE of 3 pixels or less are
regarded as inliers. The left plot in Figure 19 shows the EPE distribution over all sequences and
tracked points, with the average reported in the legend.

Here, our tracker shows superior accuracy with an average inlier EPE of 0.449 pixels vs the
KLT average EPE of 0.773 pixels. The center plot in Figure 19 shows a measure of the method’s
robustness, plotting the fraction of endpoint errors below a varying threshold. The fraction at
the threshold of 3 pixels, i.e. the inlier ratio, is reported in the legend. Again, our tracker
is significantly more robust than KLT with an inlier ratio 0.886 vs 0.773. The lower endpoint
error of our tracker relative to the KLT should enable more precise sparse 3D reconstructions. In
the CENTAURO context, this could for example be useful in bright daylight, where the RGB-D
sensor on the robot is expected to function poorly.

Figure 18: Top: Frames from a sequence of tracking a large object - the original and archetypical
ASEA industrial robot. Bottom: Frames from a sequence tracking a small object of interest -
a valve in this case. The tracker bounding box is drawn in green. The rightmost bottom frame
shows the tracker’s confidence function of seeing the target object.
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Figure 19: Left: distribution of endpoint errors, Center: robustness, Right: one frame from the
MPI Sintel dataset, with estimated point tracks and ground-truth point tracks overlaid in green
and red, respectively.

Detailed descriptions of our method and the experiments are available in our paper [6].
Future research directions include incorporating motion-based features that are derived from
optical flow [9].

5 Object Pose- and Workspace Estimation
Once an object of interest is successfully classified and tracked, its 6D pose (3D position and
3D orientation) must be determined before it can be grasped in a task-specific way. With the
objects removed from the sensor data, the remaining points are considered as the background
which forms the workspace of the robot. By registering each new set of workspace data relative
to a local map of the robot’s close environment, this map can be extended, refined or updated.

5.1 Grasping Pose Estimation
In order to determine the optimal grasping pose, it is essential to not only localize the object we
want to manipulate, but also to estimate its 6D pose with respect to the robot. Our method for
pose estimation is based on the approach by Aldoma et al. [1] and is illustrated in Figure 20.
It learns a 3D colored model of the object of interest by registering RGB-D views of it that are
recorded on a turn table. Multiple detection hypotheses are tested in the current view of the
scene and the 3D model is registered to the best detection. This yields a 6D pose of the detected
object.

(a) 3D model (b) RGB-D input (c) Proposals (d) Registered

Figure 20: Object pose estimation of an adjustable wrench. A 3D model (a) is sampled in
different locations and orientations (c) and the best fit is registered to the current view (d).
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5.2 3D-Registration of Object and Workspace Data
A generic alternative approach is to convert the output of the RGB-D sensor into a point cloud,
register it against a prototype of the detected object with a known pose (also stored as a point
cloud) and finally compute the pose from the estimated rigid transformation. In the case of
workspace registration, the pose is instead computed relative to the robot’s local workspace
map.

The typical approach to point-cloud registration is the Iterative Closest Point (ICP) method.
However, probabilistic methods have recently produced state-of-the-art results [7, 11, 27, 26].
These methods model the point clouds as density distributions and use either correlation to
maximize a similarity measure between the two point clouds or expectation-maximization to
jointly estimate the point distributions and registration transform.

However, despite the existence of both RGB-D and color-LIDAR sensors, color is largely
ignored in these probabilistic approaches (with exception [26]) and in order to exploit their full
functionality, we developed a new expectation-maximization based method [5] taking color into
account.

In this work the cloud point coordinates are clustered and modeled as a mixture of Gaus-
sians, following [7], while jointly representing the color distribution within each cluster with a
secondary Gaussian mixture model (GMM). An example of this setup is shown in Figure 21.
With this model, both the coordinate clusters and the relative rigid transform between two (or
more) point clouds can then be found through expectation maximization. An example with
CENTAURO data is shown in Figure 22, where four point clouds of the same scene are jointly
registered.

Figure 21: An illustration of our mixture model of the joint point-color space (from [5]). Each
spatial component k is associated with a mixture model in the color space, here visualized as
histograms. The point cloud is depicting a soft pencil pouch (top) and a few other items on a
desk.

We perform quantitative experiments on the Stanford Lounge dataset [30], consisting of
3000 RGB-D images. A sample image is shown in Figure 23.
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Figure 22: Registration of point clouds in a CENTAURO scenario. Left: some industrial ma-
chinery and shelves. Right: A point cloud of the same scene after registration. The camera
frustums are outlined in red.

Figure 23: Example RGB and depth image pair from the Stanford Lounge dataset (top) and
a CENTAURO workspace (bottom). Once the pipeline with detection and registration is in-
tegrated, objects such as the hammer and the wrench will be masked out from the workspace
(background).
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We compare our method to standard ICP, color-supported generalized ICP (GICP) [15], two
probabilistic registration methods, GMMReg [13] and JRMPS [7] as well as two alternatives to
merging color and spatial information: the ”direct” method of concatenate the point coordinates
and colors in a single vector, and the ”independent” method where colors and coordinates are
treated as stochastically independent. The results in Table 1 show that our method achieves
significantly lower rotation error and failure rate. The rotation error is defined as the Frobenius
distance between two rotation matrices, i.e. ||R̂ − R||F while failure rate is the percentage
of rotation errors larger than 0.1 (approximately 4 degrees), with a good margin sufficient to
reliably grasp objects with the CENTAURO robot.

A more detailed account and more experiments, including tests on color LIDAR point
clouds, are found in [5]. In future research we intend to extend our model with more sophisti-
cated, structural features such as local shape information [4].

Avg. error Std. dev. Failure rate (%)

ICP 4.32 ·10−2 2.53 ·10−2 15.70
GMMReg [13] 6.09 ·10−2 2.31 ·10−2 59.04
Color GICP [15] 1.72 ·10−2 1.75 ·10−2 1.27
JRMPS [7] 1.68 ·10−2 1.24 ·10−2 3.41

Direct Approach 1.91 ·10−2 1.30 ·10−2 2.14
Independent Approach 1.68 ·10−2 1.24 ·10−2 3.41
Our Approach 1.47 ·10−2 1.01 ·10−2 0.74

Table 1: A comparison with other registration methods on the Stanford Lounge dataset. Quan-
titative results on CENTAURO data will be presented in the forthcoming Deliverable D8.2.

6 Future Work
The next steps in the project work related to Task 6.1 can be summarized as

• Evaluate the core components according to the evaluation plan.

• Complete the pipeline that contains the described functionalities.

• Evaluate the pipeline.

• Integrate the pipeline into the robot platform.

• Connect to WP4 and motion modules from WP6.

• Evaluate the system.

Regarding the first item, at least one method for each core component has been suggested.
To which extent the chosen methods are sufficient will be tested in the component evaluations
(D8.2). As in any research project, it is expected that after the evaluation steps some of the
current functionality may have to be modified, extended, or even replaced. For the pipeline
integration, the chosen methods need to be adapted to or reimplemented for the CENTAURO
system architecture.
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Appendix
The following papers are enclosed below in the order of their appearance in the report:
[4, 5, 6, 9, 18]
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Abstract—3D-point set registration is an active area of re-
search in computer vision. In recent years, probabilistic reg-
istration approaches have demonstrated superior performance
for many challenging applications. Generally, these probabilistic
approaches rely on the spatial distribution of the 3D-points,
and only recently color information has been integrated into
such a framework, significantly improving registration accuracy.
Other than local color information, high-dimensional 3D shape
features have been successfully employed in many applications
such as action recognition and 3D object recognition. In this
paper, we propose a probabilistic framework to integrate high-
dimensional 3D shape features with color information for point
set registration. The 3D shape features are distinctive and provide
complementary information beneficial for robust registration. We
validate our proposed framework by performing comprehensive
experiments on the challenging Stanford Lounge dataset, ac-
quired by a RGB-D sensor, and an outdoor dataset captured
by a Lidar sensor. The results clearly demonstrate that our
approach provides superior results both in terms of robustness
and accuracy compared to state-of-the-art probabilistic methods.

I. INTRODUCTION

Registration of 3D-point sets is a challenging problem in
computer vision, with many potential applications, such as
scene reconstruction, robotics, and 3D object localization.
The registration problem involves estimating the relative rigid
transformations between two or more point sets. In recent
years, the probabilistic registration methods have demonstrated
promising results on challenging datasets. These approaches
model the distribution of 3D-points as a density function.
The registration is then performed by either maximizing a
similarity measure between the density models [1], [2], or
applying the Expectation Maximization (EM) algorithm to
iteratively find the registration parameters [3], [4], [5], [6].

Initially, most existing probabilistic registration approaches
only utilized the spatial distribution of the 3D-points. Recently,
feature information, such as color, has been integrated in
such a probabilistic framework [6]. The integration of local
color information is performed by constructing a density
model of the joint spatial-color space. Other than local color
information, high-dimensional 3D shape features, e.g. 3D-
SIFT [7] and PFH [8], have been successfully employed in
many applications such as action recognition [9] and 3D
object recognition [10]. The 3D features extract information
from a local neighborhood in the point set, and are therefore

1Both authors contributed equally to this work.

(a) Initial position. (b) JRMPS [3].

(c) CPPSR [6]. (d) Our registration.

Fig. 1. Registration of four different Lidar scans (a) of an outdoor scene.
The two state-of-the-art GMM-based methods JRMPS [3] (b) and CPPSR [6]
(c) fail to register the point sets due to severe occlusions and non-uniform
point density. Our method (d) accurately registers the sets by exploiting high
dimensional shape features in the registration.

distinctive and posses high discriminative power. Additionally,
when color is insufficient, 3D shape information provides
complementary information beneficial for such registration
tasks. However, the problem of integrating high-dimensional
shape features and fusing them with color information are yet
to be investigated for probabilistic point set registration.

The recently introduced color-based probabilistic framework
[6] efficiently models the distribution of feature observations
with a mixture model in the color space. However, this strategy
cannot be directly employed for 3D shape features due to their
high dimensionality. In the context of object recognition, high-
dimensional features are quantized by learning a task-specific
codebook, to obtain a bag-of-words (BOW) based probabilis-
tic representation. In this work, we propose a probabilistic
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representation of the feature space, that is reminiscent to the
BOW methodology, for integrating high-dimensional shape
features. In our approach, the feature space is first quantized
by clustering based on the feature descriptors extracted from
the point sets. This leads to a compact feature representation
that is data adaptive. The clustered shape representation then
serves as a basis for estimating the local feature distributions
in the point set.

As discussed above, the 3D shape features are expected
to provide improved registration performance in terms of
robustness due to their distinctiveness and high discriminative
power. On the other hand, local information, such as color
observations, have a high spatial resolution, leading to im-
proved accuracy [6]. A careful strategy when integrating 3D
shape information is necessary for improved robustness, while
preserving the accuracy of the registration. In this work, we
tackle this problem by introducing an adaptive fusion strategy
for robust point set registration.
Contributions: In this paper, we propose to integrate high-
dimensional 3D-shape features in a probabilistic framework
for point set registration. To construct a compact probabilistic
representation of the feature space, we introduce an effi-
cient model that is reminiscent to the popular bag-of-words
paradigm. To aid the registration process, our approach jointly
estimates the local feature distribution parameters in an EM-
framework. We further introduce an adaptive strategy for
integrating the shape features with color information to obtain
improved robustness, while maintaining the accuracy.

We evaluate our approach on two challenging datasets:
one indoor scene captured by an RGB-D sensor and one
outdoors scene captured by a Lidar. The results demonstrate
that integration of shape feature significantly improves the
robustness of the registration, with a significant reduction
in failure rate. Further, our adaptive fusion strategy ensures
the improved robustness is obtained without any significant
degradation in accuracy. Figure 1 shows a visualization of the
registration results on the Lidar Outdoor dataset. Our method
accurately registers the four, highly dissimilar views, while
state-of-the-art probabilistic approaches [3], [6] struggle in
these challenging situations.

II. RELATED WORK

In recent years, the problem of point sets registration has
received much attention. Most of the earlier approaches were
based on the classical Iterative Closest Points (ICP) algorithm
[11]. The ICP approach computes the rigid transformation
that minimizes the distance between the assumed point corre-
spondences. The assumed correspondences are then iteratively
updated by finding the nearest neighbors. The standard ICP al-
gorithm requires proper initialization for correct convergence.
Several approaches exist in literature that extend the standard
ICP algorithm to improve robustness to large initialization
errors [12], [13], [14].

Other than the ICP based approaches, probabilistic regis-
tration methods have shown promising results in recent years.

The probabilistic methods employ a density model of the dis-
tribution of the points. The GMMReg [1] approach optimizes
a distance measure between Gaussian mixture models (GMM)
of the two point sets, to find the transformation. A correlation
based statistical approach for point set registration has been
proposed by Tsin and Kanade [2]. In this approach, the KL
divergence is maximized with respect to the transformation pa-
rameters. Evangelidis et al. [3] propose a generative approach
for jointly registering multiple point sets (JRMPS). Different to
previous methods [4], [5], this approach assumes the point sets
to be generated from the same GMM. The rigid transformation
and mixture parameters are jointly estimated using a EM-based
Maximum Likelihood (ML) optimization.

Despite the success of the above mentioned probabilistic
approaches, feature information such as color and shape
have been largely ignored. In a recent work, Danelljan et
al. [6] propose a probabilistic framework to integrate color
information for point set registration. The approach extends
the probabilistic model of [3] by modeling the density of
the joint point-color space. In [6] only color information was
investigated. However, the model is generic and can be used
with any invariant feature.

In the context of 3D object recognition, 3D shape features
have demonstrated promising results [10], [15]. These features
typically integrate information from a spatial neighborhood
in the point set into a high-dimensional descriptor. Feature-
based registration approaches are typically based on matching
to obtain correspondences. Poreba et al. [16] developed a
method based on features consisting of two steps: an initial
estimation based on robust feature matching using RANSAC
and a second step that refines the initial transformation.
Basdogan et al. [17] propose a registration framework based
on a geometric descriptor and an efficient k-NN search for
finding correspondences. Different from these methods, we do
not employ explicit matching of feature descriptors. Instead,
we investigate the integration of 3D shape features in a
probabilistic registration framework.

III. PROBABILISTIC POINT SET REGISTRATION
FRAMEWORK

Our registration framework is based on the recent Color-
based Probabilistic Point Set Registration (CPPSR) method
[6]. This framework extends the probabilistic registration
model [3] with feature observations for increased robustness
and accuracy. In [6], only the incorporation of color measure-
ments obtained from the sensor, e.g. an RGB-D camera or a
Lidar, was investigated. The model can however be extended
to any feature information that is invariant to rigid transfor-
mations. Unlike most registration methods, the approaches [6],
[3] allows joint registration of multiple point sets.

In the CPPSR, a point cloud Xi is modeled as a set
of observed 3D-points xij ∈ R3 and corresponding feature
values yij ∈ Ω. Here, Ω denotes the feature space and
(xij , yij) ∈ Xi is the jth observation in the ith point set. We
denote the random variables associated with the corresponding
observations with capital letters Xij , Yij . All observations
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are assumed to originate from a common joint distribution
pV,Y that represents the scene in a reference coordinate
system (reference frame). The points Xij in set i are related
to the reference frame by an unknown rigid transformation
φi(x) = Rix+ ti, that maps the points in Xi to the reference
frame. The transformed observations are thus distributed as
(φi(Xij), Yij) ∼ pV,Y . The registration problem is then
formulated as finding the transformation parameters Ri, ti
along with the model parameters for the density pV,Y , given
the observations (xij , yij).

The density of the joint point-feature space is described
as a mixture model. Gaussian components are used in the
spatial dimensions to represent the spatial distribution of 3D-
points. The feature distribution at each spatial component is
modeled by a mixture of non-parametric components. For an
observation (X, Y ), a pair of discrete latent random variables
(Z,C) are introduced. These assign the observation to the
spatial mixture component Z ∈ {0, . . . ,K} and the feature
component C ∈ {1, . . . , L}. Here, K and L denote the
number of spatial and feature components respectively. The
mixture model of the joint point-feature space is based on
the conditional independence assumption X ⊥⊥ Y,C |Z,
which enables the following factorization of the complete-
data likelihood, pX,Y,C,Z = pX|ZpY |C,ZpC|ZpZ . The factor
pZ is defined by the mixture weight πk = pZ(k) of com-
ponent k. The first factor is given by a Gaussian function
pX|Z(x|k) = N (φi(x);µk,Σk), where i is the set from which
the observation originates. In addition, a uniform component
is used for k = 0 to model outliers.

The feature distribution is modeled by the factors pY |C,Z

and pC|Z . In the CPPSR, a general non-parametric component
density function pY |C,Z(y|l, k) = Bl(y) is used for k ≥ 0.
As for the spatial case, a uniform component is used for
k = 0. Since the components Bl are non-parametric, the
feature distribution for each spatial component k is completely
determined by the parameters ρkl = pC|Z(l|k). They represent
the feature component weights for each k. By marginalizing
over the latent variables Z,C, the mixture model of the
observation (X,Y ) is computed as,

pX,Y (x, y) =

K∑
k=1

L∑
l=1

πkρklBl(y)N (φi(x);µk,Σk)

+ π0UU (φi(x))UΩ(y). (1)

Here, UU and UΩ denote uniform distributions over the scene
and the feature space respectively.

The registration is performed by finding a finding a Max-
imum Likelihood (ML) estimate of the mixture model pa-
rameters Θ =

(
{πk,µk,Σk, ρk1, . . . , ρkL}Kk=1, {Ri, ti}Mi=1

)
.

This is obtained using Expectation Conditional Maximization
(ECM) [18] as described in [6], [3]. In the Expectation step,
the posterior distributions of the latent variables are updated.
The two consecutive Conditional Maximization steps updates
the transformation and mixture parameters respectively. The
ECM process thus jointly estimates the rigid transformations
and the density model of the scene.

IV. OUR APPROACH

Here, we present our feature-based probabilistic registra-
tion approach. Our framework integrates high-dimensional
3D shape features in a probabilistic manner, for increased
robustness of the registration.

A. Feature Description

In this work, we investigate the use of descriptive high-
dimensional features in a probabilistic registration frame-
work. Different from point-wise color observations, such high-
dimensional features capture the geometrical properties of the
local neighborhood and are typically based on histograms. In
our experiments, we employ the Point Feature Histograms
(PFH) [8] due to its discriminative power and invariance
to rigid transformations. However, other types of invariant
features can also be employed in our framework. The PFH
uses both the locations and normals of points in a fix sized
neighborhood of N points. For each pair of points in the
neighborhood, three angular features are extracted using an
invariant reference frame. The descriptor is then constructed
as a 3-dimensional histogram of the extracted angles for all
pairs, resulting in a 53-dimensional feature vector. We refer
to [8] for more details.

The incorporation of high-dimensional features into the
probabilistic framework presented in section III, requires a set
of mixture components Bl to be defined in the feature space.
Danelljan et al. [6] used products of B-spline functions to
construct a probabilistic model of the point-wise color feature
observations. The components were placed in a regular grid in
the 3-dimensional HSV space. However, this strategy implies
an exponential increase of the number of feature components
L with the dimensionality of the feature space. It is therefore
not suitable for high-dimensional 3D shape features. Instead,
we cluster the feature space, using a methodology reminiscent
to the Bag of Words (BoW) for image classification. This
enables a compact and data adaptive representation of the
feature space.

As a first step in our registration pipeline, 3D shape features
are extracted from all point sets. The feature space is then clus-
tered using K-means, based on all extracted feature vectors.
The observed feature value of a point xij is represented by the
index yij ∈ {1, . . . , L} of the closest cluster centroid. Here, L
is the number of K-means clusters. This effectively transforms
the features to the discrete space Ω = {1, . . . , L}. The feature
components are set to the indicator functions Bl = δl. Thus,
Bl(yij) = 1 whenever yij belongs to the lth cluster and
Bl(yij) = 0 otherwise. In our model, the feature component
weights ρkl specify the categorical distribution of a feature
vector from cluster l appearing at the spatial component k.
This resembles a normalized BoW histogram computed in a
spatial neighborhood.

B. Feature Distribution Initialization

Since our Maximum Likelihood estimation problem is non-
convex, the initialization of the parameters Θ is an important
step in EM-based frameworks. Here, we propose a robust
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Fig. 2. A visualization of the Lidar Outdoor Dataset, consisting of 4 Lidar scans of the same scene. The dataset is extremely challenging due to severe
occlusions and varying point density.

initialization procedure for the feature component parame-
ters ρkl. The proposed approach is more suitable to the
feature representation introduced in section IV-A. Compared
to the low-level color observations employed in [6], high-
dimensional 3D shape features are more descriptive since
they integrate information from a spatial neighborhood. Such
features are therefore more discriminative as a spatial neigh-
borhood typically contains features from a few different com-
ponents. To fully exploit the descriptiveness of 3D shape
features, we enhance the initialization procedure of the mix-
ture weights ρkl. In [6], these weights were initialized by
uniform sampling on the L − 1 simplex for each component
k. Instead, we draw independent samples from a Dirichlet
distribution (ρ

(0)
k1 , . . . , ρ

(0)
kL) ∼ Dir(αm) to obtain the initial

feature weights for each spatial component k. Here, α is
a concentration parameter and m = (m1, . . . ,mL) is the
frequency of feature values ml = 1

N

∑
ij δl(yij) normalized

with the number of observations N =
∑

ij 1.
The normalized frequency m specifies the expectation of the

Dirichlet distribution, the concentration parameter α specifies
its shape. Increasing α concentrates the probability mass
around m. Setting α = L leads to approximately uniform
sampling, provided that m is almost uniform. On the other
hand, a decreased value of α moves the probability mass
towards the boundaries of the simplex. This provides samples
of more distinctive categorical distributions (ρ

(0)
kl )Ll=1, where

most values are close to zero. A small concentration parameter
value proved important for the convergence speed and robust-
ness of our registration method. Throughout our experiments,
we use α = 1.

C. Adaptive Feature Fusion

3D shape features, such as PFH, integrate information from
a spatial neighborhood. This leads to a larger discriminative
power but also to a reduced spatial resolution in the feature
representation. An incorporation of such features can therefore
lead to increased robustness at the cost of a reduced accuracy.
To avoid this issue, we employ an approach which corresponds
to multi-resolution search strategy. The 3D shape features are
used in the first half of the EM iterations in the registration
process. This alleviates the problem of converging to the
correct local Maximum Likelihood mode. The estimate is then
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Fig. 3. A baseline comparison of three different versions of our approach.
The recall plot is computed from 200 multi-view registrations on the Lidar
outdoor dataset. We compare our final approach (FPPSR-CA), employing
both the clustering-based representation and the adaptive fusion strategy, with
a straightforward feature representation (FPPSR-A) and no adaptive fusion
strategy (FPPSR-C). Our final version (FPPSR-CA) achieves significantly
improved robustness and accuracy compared to the two baseline versions.

refined by performing the second half of the EM iterations
without the 3D features, for preserved accuracy.

V. EXPERIMENTS

We evaluate our approach on two challenging datasets: an
outdoor dataset [19] acquired by a FARO Focus 3D Lidar and
the Stanford Lounge [20] acquired by a Kinect RGB-D sensor.

A. Details and parameters

In our experiments, we fix the number of spatial components
K = 500, the outlier ratio parameter π0 = 0.005 and the
number of ECM iterations (100) for the JRMPS, CPPSR and
our approach. The number of feature clusters L in our method,
controls the trade-off between distinctiveness and invariance of
the feature representation. We found L = 10 to provide a good
balance on all datasets.

We use the Frobenius norm between the rotation matrices
[3], [6] to quantitative evaluation. The rotation error is defined
as ‖R̂ − R ‖F , where R̂ represents the estimated rotation
and R denotes the ground-truth rotation. Our approach is
implemented in MATLAB.

B. Baseline Comparison

We first perform a baseline comparison on the Lidar Out-
door Dataset [19]. The dataset consists of four scans, contain-
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TABLE I
THE RESULTS FROM THE MULTI-VIEW REGISTRATION EXPERIMENTS ON

THE LIDAR OUTDOOR DATASET, IN TERMS OF AVERAGE ERROR AND
STANDARD DEVIATION FOR INLIERS AND FAILURE RATE. OUR APPROACH

ACHIEVES A SIGNIFICANT REDUCTION IN FAILURE RATE COMPARED TO
THE STATE-OF-THE-ART APPROACHES.

Avg. err Std. dev. Failure rate (%)

JRMPS [3] 1.26 ·10−2 3.18 ·10−3 52.9
CPPSR [6] 1.20 ·10−2 4.40 ·10−3 52.6
Our 1.53 ·10−2 9.22 ·10−3 31.2

ing more than one million points each. Figure 2 shows all the
four views. The dataset is challenging due to severe occlusions
and variations in the point density. This dissimilarity between
the individual point sets significantly complicates the task
of registering the different scans. We perform a multi-view
registration experiment by jointly aligning all four views. We
perform 200 registrations by initializing each point set with
a uniformly sampled random rotation. In each view, about
5000 points are sampled using a keypoint detector2 in order
to partially alleviate the uneven distribution of the points. The
PFH descriptor for each keypoint is computed using the full
point set to ensure a sufficient amount of neighboring points.

Three different feature-based versions of our method are
evaluated. To verify the feature model proposed in sec-
tion IV-A, we compare with a version, called FPPSR-A, that
instead employs a straightforward model of the feature space.
For this purpose, we normalize the PFH descriptors and let
the feature components be the coordinate projections Bl(y) =
y(l), where y(l) denotes the lth dimension in the normalized
histogram y. To validate the adaptive feature fusion, presented
in section IV-C, we compare with FPPSR-C, that does not
employ this component. Note that FPPSR-A includes the
adaptive fusion (section IV-C) and that FPPSR-C employs the
clustering-based feature representation (section IV-A). Lastly,
we evaluate the version FPPSR-CA that employs both the
proposed feature representation and the adaptive fusion. For a
fair comparison, we use the initialization strategy described in
section IV-B for all three versions.

Figure 3 shows the recall plot of the comparison between the
three versions. The recall is obtained by computing the fraction
(vertical axis) of pairwise registration errors that are smaller
than a rotation error threshold (horizontal axis). Compared
to the straightforward feature representation (FPPSR-A), our
approach (FPPSR-CA) achieves superior robustness, shown
by the increased recall for larger thresholds. Further, our
adaptive fusion strategy significantly improves the accuracy of
the registration compared to FPPSR-C, while obtaining similar
robustness. For the remaining experiments, we use FPPSR-CA
as our final approach.

C. Lidar Dataset
Here, we perform a comprehensive comparison of our

feature-based approach with the two state-of-the-art probabilis-
tic joint registration approaches: the JRMPS [3], employing

2We use a PCL implementation of the Scale Invariant Features Transform
(SIFT) 3D detector. http://www.pointclouds.org/
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Fig. 4. A comparison of our method with the JRMPS [3] and CPPSR [6]
for the multi-view registration on the Lidar outdoor dataset. Our approach
achieves significantly improved robustness while maintaining the accuracy.

no feature information, and CPPSR [6] that utilizes the color
observations. We use an experimental setup similar to the
baseline experiment (section V-B), but perform over 500
registrations for a more extensive evaluation. Table I reports
the results in terms of average inlier error, standard deviation
and failure rate. The failure rate measures the robustness and
is defined as the percentage of pair-wise rotation errors that are
greater than 0.1 (approximately 4 degrees). A registration is
regarded an inlier if the error is smaller than 0.1. To evaluate
the accuracy of the registrations, we report the average and
standard deviation of the pair-wise inlier rotation errors.

Both the JRMPS and the CPPSR struggle in registering
the four views, with a failure rate of 52.9% and 52.6%
respectively. Our method significantly improves the state-of-
the-art with a failure rate of 31.3%, while maintaining a com-
petitive accuracy of 1.50 ·10−2 with respect to both JRMPS
(1.26 ·10−2) and CPPSR (1.20 ·10−2). Note that the error
measures are computed on the inlier registrations. Therefore,
the vastly increased number of successful registrations of our
method leads to a slightly lower average accuracy. On the other
hand, in the recall plot (figure 4) our approach provides con-
sistently better results for all error thresholds. This indicates
that our method in fact maintains the accuracy of JRMPS and
CPPRS, while significant improving the robustness.

In summary, the results clearly demonstrate that a proper
integration of high-dimensional 3D shape features leads to
superior registration performance in challenging scenarios.
Further, our approach efficiently registers multiple views,
despite partial overlap, occlusions and varying point density.
A visualization of an example registration is shown figure 1.

D. Stanford Lounge Dataset

Finally, we present results on the Stanford Lounge
Dataset [20], consisting of 3000 RGB-D frames acquired by
Kinect sensor. As ground-truth, we employ the poses provided
by the authors [20]. For computational efficiency, we randomly
downsample the frames to 10k points. In our experiments,
we do not observe any improvements when using keypoint
sampling techniques. This is partially attributed to the fact
that the variations of the point density is less significant in
this dataset. For every subsampled frame, the PFH descriptors
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(a) Initial Position. (b) Baseline JRMPS. (c) CPPSR. (d) Our.

Fig. 5. A qualitative comparison on the Stanford Lounge dataset. Registration results are shown for an example RGB-D frame. Our approach (d) more
accurately registers the point sets (a), compared to both JRMPS (b) and CPPSR (c).

TABLE II
A COMPARISON OF OUR APPROACH WITH STATE-OF-THE-ART

REGISTRATION METHODS ON THE STANFORD LOUNGE DATASET. THE
RESULTS ARE REPORTED IN TERMS OF FAILURE RATE, AVERAGE, AND

STANDARD DEVIATION OF THE INLIER ROTATION ERRORS. OUR
APPROACH SIGNIFICANTLY REDUCES THE RELATIVE FAILURE RATE BY

40% ON THIS DATASET.

Avg. err Std. dev. Failure rate (%)

ICP [11] 4.32 ·10−2 2.53 ·10−2 15.70
Color GICP [21] 1.72 ·10−2 1.75 ·10−2 1.27
JRMPS [3] 1.78 ·10−2 1.35 ·10−2 3.67
CPPSR [6] 1.54 ·10−2 1.08 ·10−2 1.00
Our 1.51 ·10−2 1.08 ·10−2 0.60

are computed for each sampled point, by utilizing the complete
point set. As in [6], we perform pairwise registration between
frame number n and n+ 5 for all the frames in the dataset.

Table II reports the average error, the standard deviation, and
the failure rate for the compared methods. In addition to the
probabilistic methods, we also compare with the standard ICP
and the Color-GICP. The JRMPS approach provides a failure
rate of 3.67%. The recently introduced CPPSR, employing the
color features, obtains competitive results with a failure rate of
1.00%. Our approach significantly improves the state-of-the-
art on this dataset, with a failure rate of 0.60%. It is worth to
mention that our approach provides this significant reduction
of failure rate without any degradation in accuracy. Figure 5
shows a qualitative comparison of our approach with both the
JRMPS and CPPSR on the Stanford dataset.

VI. CONCLUSION

We propose a probabilistic framework to integrate high
dimensional 3D features for point set registration. Our ap-
proach constructs a compact probabilistic representation by
clustering the high-dimensional feature space. The local fea-
ture distribution parameters are jointly estimated in an EM-
framework. Moreover, we introduce an adaptive fusion strat-
egy to integrate high-dimensional 3D shape features with local
color information. Experiments on two challenging datasets
clearly demonstrate that our approach leads to significant im-
provement in robustness without any degradation in accuracy.
Future work involves further investigations on the impact of
the clustered shape representation employed in our framework.
Another research direction is to perform a comprehensive
evaluation of the 3D shape descriptors for probabilistic point
set registration.
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Abstract

In recent years, sensors capable of measuring both color
and depth information have become increasingly popular.
Despite the abundance of colored point set data, state-
of-the-art probabilistic registration techniques ignore the
available color information. In this paper, we propose a
probabilistic point set registration framework that exploits
available color information associated with the points. Our
method is based on a model of the joint distribution of
3D-point observations and their color information. The
proposed model captures discriminative color information,
while being computationally efficient. We derive an EM al-
gorithm for jointly estimating the model parameters and the
relative transformations.

Comprehensive experiments are performed on the Stan-
ford Lounge dataset, captured by an RGB-D camera, and
two point sets captured by a Lidar sensor. Our results
demonstrate a significant gain in robustness and accuracy
when incorporating color information. On the Stanford
Lounge dataset, our approach achieves a relative reduction
of the failure rate by 78% compared to the baseline. Fur-
thermore, our proposed model outperforms standard strate-
gies for combining color and 3D-point information, leading
to state-of-the-art results.

1. Introduction
3D-point set registration is a classical computer vision

problem with important applications. Generally, the points
originate from measurements of sensors, such as time-of-
flight cameras and laser range scanners. The problem is to
register observed point sets from the same scene by finding
their relative geometric transformations. One class of ap-
proaches [2, 16], based on the Iterative Closest Point (ICP)
[1], iteratively assumes pairwise correspondences and then
finds the transformation by distance minimization. Alterna-
tively, probabilistic methods [5, 7, 9, 14] model the distribu-
tion of points using e.g. Gaussian Mixture Models (GMMs).

Recently, probabilistic approaches demonstrated promis-
ing results for point set registration [5, 7]. The im-

(a) First set.

(b) Second set.

(c) Baseline registration [5]. (d) Our color-based registration.

Figure 1. Registration of the two colored point sets (a) and (b),
of an indoor scene captured by a Lidar. The baseline GMM-based
method (c) fails to register the two point sets due to the large initial
rotation error of 90 degrees. Our method accurately registers the
two sets (d), by exploiting the available color information.

proved performance in probabilistic methods is achieved
by modeling the distribution of points as a density func-
tion. The probabilistic approaches can be further catego-
rized into correlation-based and Expectation Maximization
(EM) based methods. The correlation-based approaches
[9, 17] estimate the transformation parameters by maximiz-
ing a similarity measure between the density models of the
two point sets. Instead, the EM-based methods simultane-
ously estimate the density model and the transformation pa-
rameters [5, 7, 14]. In this paper, we explore probabilistic
models for EM-based colored point set registration.

State-of-the-art probabilistic techniques [5, 7, 14] rely on
the distribution of points in 3D-space, while ignoring addi-
tional information, such as color, for point set registration.
On the other hand, the increased availability of cheap RGB-
D cameras has triggered the use of colored 3D-point sets
in many computer vision applications, including 3D object
recognition [4], scene reconstruction [3] and robotics [6].
Besides RGB-D cameras, many laser range scanners also
capture RGB or intensity information. Additionally, col-



ored point sets are produced by stereo cameras and ordinary
cameras by using structure from motion. In this paper, we
investigate the problem of incorporating color information
for probabilistic point set registration, regardless of the sen-
sor used for capturing the data.

When incorporating color information in probabilistic
point set registration, the main objective is to find a suitable
probability density model of the joint observation space.
The joint space consists of the 3D-point observations and
their associated color information. Color information can
be incorporated into a probabilistic point set model in two
standard ways. (i) A first approach is to directly intro-
duce joint mixture components in the complete observation
space. This model requires large amounts of data due to
the high dimensionality of the joint space, leading to a high
computational cost. (ii) A second approach is to assume
stochastic independence between points and color, which
enables separable modeling of both spaces. However, this
assumption ignores the crucial information about the spatial
dependence of color. The aforementioned shortcomings of
both fusion approaches motivate us to investigate alternative
probabilistic models for incorporating color information.
Contributions: In this paper, we propose a color-based
probabilistic framework for point set registration. Our
model combines the advantages of (i) and (ii), by assuming
conditional independence between the location of a point
and its color value, given the spatial mixture component.
In our model, each spatial component also contains a non-
parametric density estimator of the local color distribution.
We derive an efficient EM algorithm for joint estimation
of the mixture and the transformation parameters. Our ap-
proach is generic and can be used to integrate other invariant
features, such as curvature and local shape.

Comprehensive experiments are performed on the Stan-
ford Lounge dataset [19] containing 3000 RGB-D frames
with ground-truth poses. We also perform experiments on
two colored point sets captured by a Lidar: one indoor scene
and one outdoor scene [18]. The results clearly demonstrate
that our color-based registration significantly improves the
baseline method. We further show that the proposed color-
based registration method outperforms standard color ex-
tensions, leading to state-of-the-art performance. Figure 1
shows registration results on the indoor Lidar dataset, using
the baseline [5] and our color-based registration model.

2. Related Work
Initially, most point set registration methods [2, 16] were

based on the classical ICP [1] algorithm. The ICP-based
approaches alternate between assuming point-to-point cor-
respondences between the two sets and finding the optimal
transformation parameters. The standard ICP [1] is known
to require a good initialization, since it is prone to get stuck
in local minima. Several methods [2, 15, 16] have been pro-

posed to tackle this robustness issue.
Probabilistic registration techniques employ, e.g., Gaus-

sian mixtures to model the distribution of points. In corre-
lation based probabilistic approaches [9, 17], the two point
sets are modeled separately in a first step. A similarity mea-
sure between the density models, e.g. the KL divergence, is
then maximized with respect to the transformation parame-
ters. However, these methods lead to nonlinear optimization
problems with non-convex constraints. To avoid complex
optimization problems, several recent methods [5, 7, 14] si-
multaneously estimate the density model and the registra-
tion parameters in an EM-based framework. Among these
methods, the recent Joint Registration of Multiple Point Sets
(JRMPS) [5] models all involved point sets as transformed
realizations of a single common GMM. Compared to previ-
ous EM-based methods [7, 14], JRMPS does not constrain
the GMM centroids to the points in a particular set. This
further enables a joint registration of multiple point sets.

The use of color information for point set registration has
been investigated in previous works [8, 11, 10, 12]. Huhle et
al. [8] propose a kernel-based extension to the normal dis-
tributions transform, for aligning colored point sets. Most
approaches [10, 11, 12] aim at augmenting ICP-based meth-
ods [1, 16] with color. In these approaches, a metric is intro-
duced in a joint point-color space, to find correspondences
in each iteration. A drawback of these ICP variants is that
the metric relies on a data dependent parameter that controls
the trade-off between spatial distance and color difference.
Different to these methods, we incorporate color informa-
tion in a probabilistic registration framework. The registra-
tion is performed using an EM-based maximum likelihood
estimation. Next, we describe the baseline probabilistic reg-
istration framework.

3. Joint Registration of Point Sets
We base our registration framework on the JRMPS

[5] method, since it has shown to provide improved per-
formance compared to previous GMM based approaches
[7, 14]. Contrary to these methods, JRMPS assumes both
sets to be transformed realizations of one reference GMM.
This avoids the underlying asymmetric assumption of us-
ing one of the sets as a reference model in the registration
[7, 14]. Further, the JRMPS has the advantage of naturally
generalizing to joint registration of multiple sets.

3.1. Point Set Observation Model

In the problem of joint registration of multiple point sets,
the observations consist of 3D-points in M different views
of the same scene. The aim is then to find the transforma-
tion of each set to a common reference coordinate system,
called the reference frame. All observations of 3D-points
are assumed to originate from the same spatial distribution
V ∼ pV, representing the entire scene. Here, V ∈ R3 is a



random variable (r.v.) of a point in the reference frame, and
pV is the probability density function (p.d.f.) of V.

Let Xij ∈ R3 be the r.v. of the j:th observed point in
view i ∈ {1, . . . ,M} and let xij be its observed value. Ob-
servations in view i are related to the reference frame by
the unknown rigid transformation φi(x) = Rix + ti, such
that φi(Xij) ∼ pV. The transformed observations φi(Xij)
thus have the distribution pV in the reference frame. Con-
sequently, the p.d.f. of the observation Xij is given by
pXij

(xij) = pV(φi(xij)). To simplify notation, we often
write pXij

(xij) = p(xij).
As described above, the observed points are assumed to

be transformed samples of the distribution pV. The point
distribution pV is modeled as a mixture of Gaussian distri-
butions. LetK be the number of Gaussian components. We
then introduce the discrete latent r.v. Z ∈ {0, . . . ,K} that
assigns the point V to the mixture component Z = k. The
extra 0th component is a uniform distribution that models
the occurrence of outlier points. The joint p.d.f. of V and
Z factorizes as p(v, z) = p(v|z)p(z). For discrete vari-
ables, we use the notation p(Z = k) = pZ(k). The mixture
component weights πk are defined as the prior probabilities
πk = p(Z = k) of the latent variable Z. The conditional
distribution of V given Z = k is then defined as,

p(v|Z = k) =

{
UU (v), k = 0

N (v;µk,Σk), k 6= 0.
(1)

Here, UU denotes a uniform distribution in the convex hull
U ⊂ R3 of the observations [7]. The multivariate normal
distribution with expectation µ and covariance Σ is denoted
by N (· ;µ,Σ). The point density function pV is obtained
by marginalizing over the latent variable Z,

pV(v) =

K∑
k=1

πkN (v;µk,Σk) + π0UU (v). (2)

Next, we describe how the above described observation
model is used for point set registration.

3.2. Point Set Registration

The registration is performed by jointly estimating the
transformation and the GMM parameters, in (2), using the
EM algorithm. We denote the set of all observations by
X = {xij}Ni,M

j=1,i=1 and the collection of corresponding la-
tent variables by Z = {Zij}Ni,M

j=1,i=1. Here, Ni denotes the
number of observations in point set i. All observations are
assumed to be independent. As in [5], a fix outlier weight
π0 is assumed. The model parameters are summarized as,

Θ =
(
{πk,µk,Σk}Kk=1, {Ri, ti}Mi=1

)
. (3)

The point registration is performed by jointly estimating the
parameters Θ from the observed dataX . In [5], a Maximum

Likelihood (ML) estimate of Θ is obtained using the Ex-
pectation Maximization (EM) framework. The E-step eval-
uates the conditional expectation of the complete data log-
likelihood log p(X ,Z|Θ). The expectation is taken with re-
spect to the latent variables Z given the observed data X
and the current estimate of the parameters Θ(n),

Q(Θ; Θ(n)) = EZ|X ,Θ(n) [log p(X ,Z|Θ)]

=
∑
Z
p(Z|X ,Θ(n)) log p(X ,Z|Θ) (4)

In the M-step, the aim is to find the optimizer of (4) as
Θ(n+1) = arg maxΘQ(Θ; Θ(n)). To obtain a closed form
solution, the M-step is divided into two conditional max-
imization (CM) steps [13], where the transformation and
GMM parameters are updated separately [7].

Using the definitions in section 3.1 and the independent
observations assumption, the complete data likelihood is ex-
pressed as p(X ,Z|Θ) =

∏
ij p(xij , zij |Θ), where

p(xij , Zij = k|Θ) = πkN (φi(xij);µk,Σk) , k 6= 0. (5)

The posterior density of the latent variables factorizes as
p(Z|X ,Θ(n)) =

∏
ij p(zij |xij ,Θ(n)). The E-step then re-

duces to computing the posterior probabilities of the latent
variables α(n)

ijk := p(Zij = k|xij ,Θ(n)) [5]. Eq. 4 now
simplifies to,

Q(Θ; Θ(n)) =
∑
ijk

α
(n)
ijk log p(xij , Zij = k|Θ). (6)

By applying (5) and ignoring constant terms, (6) can be
rewritten to the equivalent minimization problem,

f(Θ; Θ(n)) =
∑
ij

K∑
k=1

α
(n)
ijk

(
1

2
log |Σk|

+
1

2
‖Rixij + ti − µk‖2Σ−1

k

− log πk

)
. (7)

Here, |Σk| denotes the determinant of Σk and we have de-
fined ‖x‖2

Σ−1
k

= xTΣ−1
k x. For simplicity, isotropic covari-

ances are assumed Σk = σ2
kI , as in [5].

The parameters Θ are updated in the two CM-steps of the
algorithm. The first CM-step minimizes (7) with respect to
the transformation parameters {Ri, ti}Mi=1, given the cur-
rent GMM parameters {π(n−1)

k ,µ
(n−1)
k ,Σ

(n−1)
k }Kk=1. The

second CM-step minimizes (7) with respect to the GMM
parameters given the new {R(n)

i , t
(n)
i }Mi=1. We refer to [5]

for the closed form solutions of the two CM-steps. Next we
introduce our color based registration technique.

4. Feature Based Point Set Registration
We reformulate the registration problem from section 3

to incorporate feature information associated with each 3D-
point. In this work, we investigate the incorporation of color



Figure 2. An illustration of our mixture model of the joint point-
color space. The ellipses represent spatial mixture components
p(v|Z = k) in our model. Each spatial component k is associated
with a mixture model in the color space, given by the weights ρkl
(visualized as histograms). This mixture model encodes the color
distribution of points associated with the spatial component k.

information for point set registration. However, our frame-
work is not restricted to color features. It also enables the
use of, e.g., structural features that describe the local shape
or curvature of the point set.

4.1. Feature Based Observation Model

Our framework assumes the observations to consist of
a 3D-point and its associated feature value, e.g. color. Let
Y ∈ Ω denote the r.v. of the feature value associated with
the 3D-point V. Here, Ω is the set of all possible feature
values, called the feature space. For example, if Y is the
color of the 3D-point in normalized HSV coordinates, then
the feature space is the unit cube Ω = [0, 1]3. We assume
observations of points and features to originate from a com-
mon joint distribution (V, Y ) ∼ pV,Y . The aim of this pa-
per is to propose an efficient yet distinctive mixture model
of the joint point-feature density pV,Y . Next, we investigate
three different strategies to construct a mixture model of the
joint point-feature space.

4.1.1 The Direct Approach

A direct generalization of the GMM based registration tech-
nique (section 3), is to introduce joint mixture components
in the point-feature space R3×Ω. In general, let F (v, y; θk)
denote the density function of a mixture component in the
joint space (v, y) ∈ R3 × Ω. Here, θk denote the param-
eters of the k:th component. A mixture model in the joint
point-feature space is expressed as

pV,Y (v, y) =

K∑
k=1

πkF (v, y; θk). (8)

However, this strategy of directly introducing joint com-
ponents F (v, y; θk) requires a large amount of data, due to
the exponential growth of volume with the number of di-
mensions (i.e. the curse of dimensionality). This leads to a
higher computational cost.

4.1.2 The Independent Approach

To alleviate the problems induced by the direct strategy (8),
a simple approach is to assume stochastic independence be-
tween 3D-points and feature values. The joint distribution
pV,Y then factorizes as the product of the marginal distribu-
tions for the 3D-points pV and feature values pY , such that
pV,Y = pVpY . This assumption enables the spatial distri-
bution of points pV and the distribution of features pY to
be modeled separately. Let F̃ , θ̃l and π̃l denote the compo-
nents, parameters and weights respectively for the mixture
model of the feature density pY . We denote the number of
feature components by L. The joint distribution can then be
expressed as

pV,Y (v, y) =

K∑
k=1

L∑
l=1

πkπ̃lN (v;µk,Σk)F̃ (y; θ̃l). (9)

Here, we have used the GMM presented in section 3.1 for
the spatial distribution pV and ignore the uniform compo-
nent for simplicity. While the independence assumption al-
lows for a separation of the mixture models, it completely
removes information regarding the spatial dependence of
feature values. Such information is crucial for aiding the
registration process.

The aforementioned approaches have major limitations
when incorporating feature information for point set regis-
tration. Next, we describe an approach that combines the
discriminative power of the direct approach with the effi-
ciency of the independent approach.

4.1.3 Our Approach

We propose a mixture model of the joint point-feature space
R3 × Ω that tackles the drawbacks of the aforementioned
approaches. Contrary to the direct strategy (section 4.1.1),
our method does not require an increased amount of points
to infer the model parameters. We thereby avoid the prob-
lems induced by the higher dimensionality of the observa-
tion space. Additionally, our model accurately captures the
local characteristics in the distribution of features, e.g., how
colors are distributed in the scene. This enables our frame-
work to exploit the underlying discriminative feature infor-
mation associated with each 3D-point.

The proposed mixture model contains a separate feature
distribution for each spatial mixture component (illustrated
in figure 2). In addition to the spatial latent variable Z, we
introduce a second latent r.v. C ∈ {1, . . . , L}. This vari-
able assigns a point-feature pair (V, Y ) to one of the L
mixture components in the feature space Ω. Our model is
based on the conditional independence assumption between
the point V and the feature variables Y,C given the spatial
mixture component Z. This is symbolically expressed as



V ⊥ Y,C |Z. Our model assumption enables the follow-
ing factorization of the joint p.d.f. of (V, Y, C, Z),

p(v, y, c, z) = p(v, y, c|z)p(z) = p(v|z)p(y, c|z)p(z)
= p(v|z)p(y|c, z)p(c|z)p(z). (10)

The first and fourth factor of (10) do not depend on the fea-
ture information, and are defined in section 3.1 (see (1)).

Each spatial component is given a separate feature dis-
tribution that characterizes the occurrences of feature values
in the vicinity of the component. These distributions are de-
fined by the feature component weights, determined by the
conditional probability of a feature component C = l given
a spatial component Z = k,

p(C = l|Z = k) = ρkl , k 6= 0. (11)

This expression defines the third factor in (10). The feature
mixture weights must satisfy ρkl ≥ 0 and

∑
l ρkl = 1 for

each spatial component k. For the outlier component k = 0,
we assume uniform weights p(C = l|Z = 0) = 1/L.

The second factor p(y|c, z) in (10) is determined by the
mixture components in the feature space. Since the fea-
ture space Ω can be compact or discrete, we do not restrict
our choice to Gaussian distributions. Instead, we consider
arbitrary non-negative functions Bl : Ω → R satisfying∫

Ω
Bl = 1. We define,

p(y|C = l, Z = k) =

{
UΩ(y), k = 0

Bl(y), k 6= 0.
(12)

As for the spatial mixture components (1), we also use a
uniform component in the feature space for Z = 0 to model
outliers. The integration feature information into the regis-
tration process comes at an increased computational cost. In
order to minimize this cost, we use non-parametric feature
components Bl in our model. This allows the probabili-
ties Bl(yij) to be precomputed and avoids additional costly
maximizations of in the M-step.

The proposed mixture model of the joint space is com-
puted by marginalizing over the latent variablesZ,C in (10)
and using the definitions (1), (11) and (12),

pV,Y (v, y) =

K∑
k=1

L∑
l=1

πkρklBl(y)N (v;µk,Σk)

+ π0UU (v)UΩ(y). (13)

Our model (13) differs from the direct approach (8) in that
it enables a separation between the point and feature com-
ponents. It also differs from the independent approach (9)
in that the feature component weights ρkl depend on the
spatial component k. Our model thus shares distinctiveness
with the direct approach (8) and efficiency with the inde-
pendent approach (9).

4.2. Registration

Different from the standard GMM based registration
(section 3), our model includes the feature observations
yij and the corresponding latent feature variables Cij .
In our framework, the set of all observations is X =
{(xij , yij)}Ni,M

j=1,i=1 and the collection of corresponding la-
tent variables is Z = {(Zij , Cij)}Ni,M

j=1,i=1. The model pa-
rameters have been extended with the feature distribution
weights ρkl in (11), and are given as

Θ =
(
{πk,µk,Σk, ρk1, . . . , ρkL}Kk=1, {Ri, ti}Mi=1

)
. (14)

We apply an EM procedure, as described in section 3.2,
to estimate the parameters (14) of our model. The model
assumptions in section 4.1.3 imply the complete data like-
lihood p(X ,Z|Θ) =

∏
ij p(xij , yij , cij , zij |Θ), where the

joint probability of an observation and its latent variables is

p(xij , yij , Cij = l, Zij = k|Θ) =

= πkρklBl(yij)N (φi(xij);µk,Σk) , k 6= 0. (15)

The independence of observations imply the factorization
p(Z|X ,Θ(n)) =

∏
ij p(zij , cij |xij , yij ,Θ(n)). By apply-

ing (15), the latent posteriors are expressed as,1

α
(n)
ijkl := p(Zij = k,Cij = l|xij , yij ,Θ(n)) = (16)

π
(n)
k ρ

(n)
kl Bl(yij)N

(
φ

(n)
i (xij);µ

(n)
k ,Σ

(n)
k

)
K∑
q=1

L∑
r=1

π
(n)
q ρ

(n)
qr Br(yij)N

(
φ

(n)
i (xij);µ

(n)
q ,Σ

(n)
q

)
+ λ

.

Here, the constant in the denominator, originating from the
outlier component is given by λ = π0

m(U)m(Ω) , where m
denotes the reference measure of the space.

For our mixture model, the expected complete data log-
likelihood (4) reduces to,

Q(Θ; Θ(n))=
∑
ijkl

α
(n)
ijkl log p(xij , yij , Cij = l, Zij = k|Θ).

(17)
As in section 3.2, maximization of the expected complete
data log-likelihood (17) can be reformulated as an equiva-
lent minimization problem by applying (15),1

g(Θ; Θ(n)) =
∑
ij

K∑
k=1

L∑
l=1

α
(n)
ijkl

(
1

2
log |Σk|

+
1

2
‖Rixij + ti − µk‖2Σ−1

k

− log πk − log ρkl

)
. (18)

To simplify the expression (17), we first define the
marginal latent posteriors by summing over the latent fea-
ture variable α(n)

ijk =
∑
l α

(n)
ijkl. This enables our loss (18) to

be rewritten as,
1See the supplementary material for a detailed derivation.



Figure 3. Overview of our EM-based registration. The parameters
updated after each step are indicated on the arrow.

g(Θ; Θ(n))= f(Θ; Θ(n))−
∑
ij

K∑
k=1

L∑
l=1

α
(n)
ijkl log ρkl. (19)

Here, f(Θ; Θ(n)) is the corresponding loss (7) in the stan-
dard GMM-based registration. This implies that the trans-
formation parameters (Ri, ti) and the spatial mixture pa-
rameters (πk,µk,Σk) can be obtained as in section 3.2.
However, in our method, the latent posteriors given by
(16) are used in the M-step. Different from section 3, our
marginal latent posteriors α(n)

ijk thus also integrate feature in-
formation into the EM-procedure. Finally, the feature distri-
bution weights are obtained by minimizing the second term
in (19) using Lagrangian multipliers,1

ρ
(n)
kl =

∑
ij α

(n)
ijkl∑

ij α
(n)
ijk

, k = 1, . . . ,K. (20)

We incorporate the estimation of the feature distribution pa-
rameters (20) in the second CM-step (see section 3.2), along
with the estimation of the other mixture parameters. Fig-
ure 3 shows an overview of our approach.

4.3. Feature Description

Here, we provide a detailed description of how the dis-
tribution of features is modeled, by the selection of feature
mixture components Bl. We restrict our discussion to color
features. In our model, the feature observations are repre-
sented by an HSV triplet y = (yH , yS , yV ) ∈ Ω = [0, 1]3.
In this work, we use second order B-splines to construct the
feature componentsBl. However, other functions with sim-
ilar characteristics can also be used. Each component Bl
is a separable function Bl(y) = alB

1
l (yH)B2

l (yS)B3
l (yV ).

In each dimension, the component is given by a scaled and
shifted second order B-spline function Bil . The constant al
is a normalization factor given by the condition

∫
Ω
Bl = 1.

The components Bl are placed in a regular grid inside the
unit cube Ω = [0, 1]3. The spacing between the components
is set to 1/Ld along feature dimension d, where Ld denotes
the number of components in dimension d. The total num-
ber of components is hence L =

∏
d Ld.

Similar to GMMs, our method is able to model multi-
modal color distributions. However, our choice of nonpara-
metric mixture components Bl is computationally benefi-
cial. In contrast, employing a standard GMM in the color
space requires computation of the color means and covari-
ances in the EM-procedure. Our approach further allows
the probabilities Bl(yij) to be precomputed for all points.

Figure 4. An RGB-D frame from the Stanford Lounge dataset,
containing the RGB image (left) and the depth (right).

5. Experiments
We perform a comprehensive quantitative and qualitative

evaluations on one RGB-D and two Lidar datasets.

5.1. Details and Parameters

We use the same number of spatial components K =
500, the same outlier ratio π0 = 0.005 and 100 EM-
iterations for both the standard JRMPS and our color-based
versions. We also initialize all methods with the same pa-
rameters for the spatial GMM. The initial means µ

(0)
k are

uniformly sampled on a sphere with the radius equal to the
standard deviation of the point distribution. As in [5], we
fix the spatial component weights πk to uniform, since we
did not observe any improvement in updating them. The
feature component weights ρkl are initialized by uniformly
sampling the L − 1 simplex for each k. Our approach is
implemented in Matlab. Compared to the baseline JRMPS,
our approach marginally increases the computation time (25
to 27 sec. on a single core), for 2000 points per set.

For the direct approach, presented in section 4.1.1, the
joint components are constructed as products of a spa-
tial Gaussian and a feature component F (v, y; θk) =
N (v;µk,Σk)Blk(y). Here, Blk is constructed as in sec-
tion 4.3, and the index lk ∈ {1, . . . , L} is selected ran-
domly for each component k. For the independent approach
(section 4.1.2), we also set the feature components based
on the B-splines presented in section 4.3. That is, we set
F̃ (y; θ̃l) = Bl(y) in (9). For all methods, we use Ld = 4
feature components in each dimension of the HSV space,
which gives L = 64 feature components in total. For both
the direct and independent approaches, we also employ the
additional uniform outlier component (see section 3.1).
Evaluation Criteria: We compute the rotation errors com-
pared to the ground truth by measuring the Frobenius dis-
tance between rotation matrices [5]. The rotation error is
defined as ‖R̂ − R ‖F , where R̂ and R are the estimated
and ground-truth relative rotations between two point sets.

5.2. Stanford Lounge Dataset

We perform experiments on the Stanford Lounge Dataset
[19], consisting of 3000 RGB-D frames taken by a Kinect.
Figure 4 contains an example frame. We use the estimated
poses, provided by the authors, as ground truth.



Avg. error Std. dev. Failure rate (%)

ICP [1] 4.32 ·10−2 2.53 ·10−2 15.70
GMMReg [9] 6.09 ·10−2 2.31 ·10−2 59.04
Color GICP [11] 1.72 ·10−2 1.75 ·10−2 1.27
JRMPS [5] 1.68 ·10−2 1.24 ·10−2 3.41

Direct Approach 1.91 ·10−2 1.30 ·10−2 2.14
Independent Approach 1.68 ·10−2 1.24 ·10−2 3.41
Our Approach 1.47 ·10−2 1.01 ·10−2 0.74

Table 1. A comparison with other registration methods on the Stan-
ford Lounge dataset. We report the failure rate along with the aver-
age and standard deviation of the inlier rotation errors. Compared
to the baseline JRMPS [5], our approach achieves significantly
better robustness with a relative reduction in the failure rate by
78%. Further, our approach outperforms other color based meth-
ods, including Color GICP [11].

5.2.1 Pairwise Registration

We compare our approach with several state-of-the-art
methods with publicly available code, namely ICP2 [1],
GMMReg [9], Color GICP3 [11], and the baseline JRMPS
[5]. To ensure a significant initial transformation, we per-
form registration between frame number n and n + 5, for
all frames n in the dataset. We randomly downsample the
frames to 10000 points. As a measure of robustness, we
report the failure rate defined as the percentage of rotation
errors larger than 0.1 (approximately 4 degrees). We further
define a registration to be an inlier if the error is smaller than
0.1. We compute the average and standard deviation of the
inlier rotation errors, as measures of accuracy.

The results are reported in Table 1. The standard ICP
obtains inferior performance with a failure rate of 15.7%.
The baseline JRMPS achieves a failure rate of 3.41%. The
Color GICP provides competitive results with a failure rate
of 1.27%. The two standard color extensions, using the in-
dependent and direct approaches, provides the failure rates
3.41% and 2.14% respectively. Our approach achieves the
best results on this dataset, with a failure rate of 0.74%. Ad-
ditionally, our method obtains a significant reduction of the
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Figure 5. An analysis of the number of feature mixture com-
ponents L, on the Stanford Lounge dataset. We compare our
approach with the baseline JRMPS and the two standard color-
extensions. We show the average inlier rotation error (left) and
failure rate (right) for different numbers of components per feature
dimensionLd in the HSV space. Our approach provides consistent
improvements compared to the other probabilistic approaches.

Avg. error Std. dev. Failure rate (%)

JRMPS [5] 0.913 ·10−2 0.636 ·10−2 0.467
Ours 0.768 ·10−2 0.539 ·10−2 0.067

Table 2. A comparison of joint multi-view registration on the Stan-
ford Lounge dataset, in terms of average inlier error, standard de-
viation and failure rate. Our approach significantly reduces the
relative failure rate with 86% compared to JRMPS.

0 0.005 0.01 0.015 0.02 0.025 0.03

Threshold

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

Recall Plot

Ours

JRMPS

0 20 40 60 80 100

EM Iteration

0

0.05

0.1

0.15

R
o

ta
ti
o

n
 R

M
S

E

Convergence Plot

Ours

JRMPS

Figure 6. A joint multi-view registration comparison of our
method with JRMPS [5] on the Stanford Lounge dataset. The re-
call plot (left) shows the fraction of correct registrations over a
range of rotation-error thresholds. The convergence plot (right)
shows the average frame-to-frame inlier rotation error after each
EM iteration. Our method demonstrates superior accuracy and ro-
bustness, while achieving faster convergence.

average rotation error by 12.5% compared to JRMPS.
In figure 5 we investigate the impact of varying the

number of feature components L on the Stanford Lounge
dataset, when using 2000 points per set.4 The left plot shows
the average frame-to-frame rotation error for inliers, when
increasing the number of components per HSV-dimension
from 2 to 7. As a reference, we also include the base-
line JRMPS. The independent approach (section 4.1.2) pro-
vides similar results to JRMPS. The direct approach (sec-
tion 4.1.1), requires a larger amount of data points when
increasing the number of feature components. The perfor-
mance therefore rapidly degrades as the number of feature
components is increased. Contrary to this, our model ben-
efits from increasing the number of feature components,
leading to improved results.

5.2.2 Joint Multi-view Registration

Here, we investigate the performance of our approach for
joint registration of multiple point sets. Alignment of mul-
tiple point sets is important in many applications. Most reg-
istration methods [1, 7, 11] are however limited to pairwise
registration. In these cases, multi-view registration must be
performed either by sequential pair-wise alignment or by
performing a one-versus-all strategy, leading to drift or bi-
ased solutions. Similar to JRMPS [5], our method is able to
jointly register an arbitrary number of point sets. We per-
form joint registration of every 10 consecutive frames, with

2We use the built-in MATLAB implementation of ICP.
3We use the Color GICP implemented in Point Cloud Library.
4Analysis of K and π0 is provided in the supplementary material.
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(a) Lidar Indoor dataset.
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(b) Lidar Outdoor dataset.
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Figure 7. Initialization robustness comparison on the Lidar Indoor
(a) and Outdoor (b) datasets. The left plots show the recall at a
threshold of 0.025. The recall is computed over 100 randomly
sampled rotation axes for each angle. The right plots contain the
total recall over all registrations, plotted with respect to the error
threshold. Compared to previous methods, our approach provides
superior robustness, while maintaining the accuracy.

an interval of 9 frames, on the Stanford Lounge dataset.
This implies that joint multi-view registration is performed
on frame 1-10, 10-19, etc. Table 2 contains the results,
by measuring the frame-to-frame rotation errors. Our color
based model reduces the relative failure rate by 86% com-
pared to the baseline JRMPS. In case of average rotation er-
ror, our approach provides a significant reduction of 15.9%.

Figure 6 shows the recall and convergence rate plots. Re-
call is computed as the fraction of frame-to-frame rotation
errors smaller than a threshold. In figure 6, the recall is plot-
ted over a range of error thresholds. To compare the conver-
gence rate of our method with the baseline JRMPS, we plot
the average frame-to-frame inlier rotation error after each
EM iteration. Our method converges in significantly fewer
iterations, enabling a more efficient registration.

5.3. Lidar Datasets

We experimented with two Lidar datasets, acquired by a
FARO Focus3D. Both consist of more than a million col-
ored 3D points in a single 360 degree view. The Indoor
dataset is visualized in figure 1 and the Outdoor dataset
is visualized in figure 8. We compare with state-of-the-art
methods by evaluating the robustness to initial rotation er-
rors. Registration is performed using initial rotation errors
between 0 and 180 degrees with an interval of 5 degrees.
For every angle, we uniformly sample 100 random rotation

(a) Color GICP. (b) Ours.
Figure 8. Registration of an outdoor scene captured by a Lidar.
Color GICP (a) fails to register the point sets due to a large initial
transformation. Our approach (b) accurately register the point sets.

axes. The point sets are constructed by randomly sampling
points from the single Lidar scan. For each transformation,
we sample two sets with 2000 points each. One of the sets
is then transformed with the rotation defined by its corre-
sponding axis and angle. We plot the recall at a rotation
error threshold of 0.025 (approximately 1 degree) with re-
spect to the initial angle. We also compare the total recall
over all registrations.
Lidar Indoor Dataset: Figure 7a shows the angle robust-
ness comparison in terms of angle recall and total recall.
ICP, GMMreg and Color GICP struggle for initial angles
larger than 60 degrees. The robustness of JRMSP starts to
degrade at an initial angle of 90 degrees. Our approach pro-
vides consistent registrations for angles up to 180 degrees.
Lidar Outdoor Dataset: Figure 7b shows the initial angle
robustness comparison on the Lidar Outdoor dataset. As
in the Indoor dataset, the ICP and Color GICP provides in-
ferior results due to large initial transformations. Our ap-
proach provides consistent improvements compared to the
JRMPS. Figure 8 shows a qualitative comparison between
Color GICP and our approach on this dataset.

6. Conclusions
In this work, we propose a novel probabilistic approach

to incorporate color information for point set registration.
Our method is based on constructing an efficient mixture
model for the joint point-color observation space. An EM
algorithm is then derived to estimate the parameters of the
mixture model and the relative transformations.

Experiments are performed on three challenging
datasets. Our results clearly demonstrate that color infor-
mation improves accuracy and robustness for point set reg-
istration. We show that a careful integration of spatial and
color information is crucial to obtain optimal performance.
Our approach exploits the discriminative color information
associated with each point, while preserving efficiency.
Acknowledgments: This work has been supported by SSF
(VPS), VR (EMC2), Vinnova (iQMatic), EU’s Horizon
2020 R&I program grant No 644839, the Wallenberg Au-
tonomous Systems Program, the NSC and Nvidia.
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Abstract. Discriminative Correlation Filters (DCF) have demonstrated
excellent performance for visual object tracking. The key to their success
is the ability to efficiently exploit available negative data by including
all shifted versions of a training sample. However, the underlying DCF
formulation is restricted to single-resolution feature maps, significantly
limiting its potential. In this paper, we go beyond the conventional DCF
framework and introduce a novel formulation for training continuous
convolution filters. We employ an implicit interpolation model to pose
the learning problem in the continuous spatial domain. Our proposed
formulation enables efficient integration of multi-resolution deep feature
maps, leading to superior results on three object tracking benchmarks:
OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP),
and VOT2015 (20% relative reduction in failure rate). Additionally, our
approach is capable of sub-pixel localization, crucial for the task of accu-
rate feature point tracking. We also demonstrate the effectiveness of our
learning formulation in extensive feature point tracking experiments.

1 Introduction

Visual tracking is the task of estimating the trajectory of a target in a video.
It is one of the fundamental problems in computer vision. Tracking of objects
or feature points has numerous applications in robotics, structure-from-motion,
and visual surveillance. In recent years, Discriminative Correlation Filter (DCF)
based approaches have shown outstanding results on object tracking benchmarks
[30, 46]. DCF methods train a correlation filter for the task of predicting the
target classification scores. Unlike other methods, the DCF efficiently utilize all
spatial shifts of the training samples by exploiting the discrete Fourier transform.

Deep convolutional neural networks (CNNs) have shown impressive perfor-
mance for many tasks, and are therefore of interest for DCF-based tracking. A
CNN consists of several layers of convolution, normalization and pooling opera-
tions. Recently, activations from the last convolutional layers have been success-
fully employed for image classification. Features from these deep convolutional
layers are discriminative while preserving spatial and structural information.
Surprisingly, in the context of tracking, recent DCF-based methods [10, 35] have
demonstrated the importance of shallow convolutional layers. These layers pro-
vide higher spatial resolution, which is crucial for accurate target localization.
However, fusing multiple layers in a DCF framework is still an open problem.
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Multi-resolution deep
feature map

Learned continuous
convolution filters

Confidence scores
for each layer

Final continuous confidence
output function

Fig. 1. Visualization of our continuous convolution operator, applied to a multi-
resolution deep feature map. The feature map (left) consists of the input RGB patch
along with the first and last convolutional layer of a pre-trained deep network. The sec-
ond column visualizes the continuous convolution filters learned by our framework. The
resulting continuous convolution outputs for each layer (third column) are combined
into the final continuous confidence function (right) of the target (green box).

The conventional DCF formulation is limited to a single-resolution feature
map. Therefore, all feature channels must have the same spatial resolution, as in
e.g. the HOG descriptor. This limitation prohibits joint fusion of multiple con-
volutional layers with different spatial resolutions. A straightforward strategy to
counter this restriction is to explicitly resample all feature channels to the same
common resolution. However, such a resampling strategy is both cumbersome,
adds redundant data and introduces artifacts. Instead, a principled approach for
integrating multi-resolution feature maps in the learning formulation is preferred.

In this work, we propose a novel formulation for learning a convolution opera-
tor in the continuous spatial domain. The proposed learning formulation employs
an implicit interpolation model of the training samples. Our approach learns a
set of convolution filters to produce a continuous-domain confidence map of the
target. This enables an elegant fusion of multi-resolution feature maps in a joint
learning formulation. Figure 1 shows a visualization of our continuous convolu-
tion operator, when integrating multi-resolution deep feature maps. We validate
the effectiveness of our approach on three object tracking benchmarks: OTB-
2015 [46], Temple-Color [32] and VOT2015 [29]. On the challenging OTB-2015
with 100 videos, our object tracking framework improves the state-of-the-art
from 77.3% to 82.4% in mean overlap precision.

In addition to multi-resolution fusion, our continuous domain learning for-
mulation enables accurate sub-pixel localization. This is achieved by labeling the
training samples with sub-pixel precise continuous confidence maps. Our formu-
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lation is therefore also suitable for accurate feature point tracking. Further, our
learning-based approach is discriminative and does not require explicit interpo-
lation of the image to achieve sub-pixel accuracy. We demonstrate the accuracy
and robustness of our approach by performing extensive feature point tracking
experiments on the popular MPI Sintel dataset [7].

2 Related Work

Discriminative Correlation Filters (DCF) [5, 11, 24] have shown promising results
for object tracking. These methods exploit the properties of circular correlation
for training a regressor in a sliding-window fashion. Initially, the DCF approaches
[5, 23] were restricted to a single feature channel. The DCF framework was later
extended to multi-channel feature maps [4, 13, 17]. The multi-channel DCF al-
lows high-dimensional features, such as HOG and Color Names, to be incorpo-
rated for improved tracking. In addition to the incorporation of multi-channel
features, the DCF framework has been significantly improved lately by, e.g., in-
cluding scale estimation [9, 31], non-linear kernels [23, 24], a long-term memory
[36], and by alleviating the periodic effects of circular convolution [11, 15, 18].

With the advent of deep CNNs, fully connected layers of the network have
been commonly employed for image representation [38, 43]. Recently, the last
(deep) convolutional layers were shown to be more beneficial for image classifica-
tion [8, 33]. On the other hand, the first (shallow) convolutional layer was shown
to be more suitable for visual tracking, compared to the deeper layers [10]. The
deep convolutional layers are discriminative and possess high-level visual infor-
mation. In contrast, the shallow layers contain low-level features at high spatial
resolution, beneficial for localization. Ma et al. [35] employed multiple convolu-
tional layers in a hierarchical ensemble of independent DCF trackers. Instead,
we propose a novel continuous formulation to fuse multiple convolutional layers
with different spatial resolutions in a joint learning framework.

Unlike object tracking, feature point tracking is the task of accurately es-
timating the motion of distinctive key-points. It is a core component in many
vision systems [1, 27, 39, 48]. Most feature point tracking methods are derived
from the classic Kanade-Lucas-Tomasi (KLT) tracker [34, 44]. The KLT tracker
is a generative method, that is based on minimizing the squared sum of differ-
ences between two image patches. In the last decades, significant effort has been
spent on improving the KLT tracker [2, 16]. In contrast, we propose a discrimi-
native learning based approach for feature point tracking.
Our approach: Our main contribution is a theoretical framework for learn-
ing discriminative convolution operators in the continuous spatial domain. Our
formulation has two major advantages compared to the conventional DCF frame-
work. Firstly, it allows a natural integration of multi-resolution feature maps,
e.g. combinations of convolutional layers or multi-resolution HOG and color fea-
tures. This property is especially desirable for object tracking, detection and
action recognition applications. Secondly, our continuous formulation enables
accurate sub-pixel localization, crucial in many feature point tracking problems.
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3 Learning Continuous Convolution Operators

In this section, we present a theoretical framework for learning continuous con-
volution operators. Our formulation is generic and can be applied for supervised
learning tasks, such as visual tracking and detection.

3.1 Preliminaries and Notation

In this paper, we utilize basic concepts and results in continuous Fourier anal-
ysis. For clarity, we first formulate our learning method for data defined in a
one-dimensional domain, i.e. for functions of a single spatial variable. We then
describe the generalization to higher dimensions, including images, in section 3.5.

We consider the space L2(T ) of complex-valued functions g : R→ C that are
periodic with period T > 0 and square Lebesgue integrable. The space L2(T ) is
a Hilbert space equipped with an inner product 〈·, ·〉. For functions g, h ∈ L2(T ),

〈g, h〉 =
1

T

∫ T

0

g(t)h(t) dt , g ∗ h(t) =
1

T

∫ T

0

g(t− s)h(s) ds . (1)

Here, the bar denotes complex conjugation. In (1) we have also defined the
circular convolution operation ∗ : L2(T )× L2(T )→ L2(T ).

In our derivations, we use the complex exponential functions ek(t) = ei
2π
T kt

since they are eigenfunctions of the convolution operation (1). The set {ek}∞−∞
further forms an orthonormal basis for L2(T ). We define the Fourier coefficients
of g ∈ L2(T ) as ĝ[k] = 〈g, ek〉. For clarity, we use square brackets for functions
with discrete domains. Any g ∈ L2(T ) can be expressed in terms of its Fourier
series g =

∑∞
−∞ ĝ[k]ek. The Fourier coefficients satisfy Parseval’s formula ‖g‖2 =

‖ĝ‖2`2 , where ‖g‖2 = 〈g, g〉 and ‖ĝ‖2`2 =
∑∞
−∞ |ĝ[k]|2 is the squared `2-norm.

Further, the Fourier coefficients satisfy the two convolution properties ĝ ∗ h = ĝĥ

and ĝh = ĝ ∗ ĥ, where ĝ ∗ ĥ[k] :=
∑∞
l=−∞ ĝ[k − l]ĥ[l].

3.2 Our Continuous Learning Formulation

Here we formulate our novel learning approach. The aim is to train a continu-
ous convolution operator based on training samples xj . The samples consist of
feature maps extracted from image patches. Each sample xj contains D feature
channels x1j , . . . , x

D
j , extracted from the same image patch. Conventional DCF

formulations [11, 17, 24] assume the feature channels to have the same spatial
resolution, i.e. have the same number of spatial sample points. Unlike previ-
ous works, we eliminate this restriction in our formulation and let Nd denote
the number of spatial samples in xdj . In our formulation, the feature channel

xdj ∈ RNd is viewed as a function xdj [n] indexed by the discrete spatial variable

n ∈ {0, . . . , Nd − 1}. The sample space is expressed as X = RN1 × . . .× RND .
To pose the learning problem in the continuous spatial domain, we introduce

an implicit interpolation model of the training samples. We regard the continuous
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interval [0, T ) ⊂ R to be the spatial support of the feature map. Here, the scalar
T represents the size of the support region. In practice, however, T is arbitrary
since it represents the scaling of the coordinate system. For each feature channel
d, we define the interpolation operator Jd : RNd → L2(T ) of the form,

Jd
{
xd
}

(t) =

Nd−1∑
n=0

xd[n]bd

(
t− T

Nd
n

)
. (2)

The interpolated sample Jd
{
xd
}

(t) is constructed as a superposition of shifted
versions of an interpolation function bd ∈ L2(T ). In (2), the feature values xd[n]
act as weights for each shifted function. Similar to the periodic assumption in
the conventional discrete DCF formulation, a periodic extension of the feature
map is also performed here in (2).

As discussed earlier, our objective is to learn a linear convolution operator
Sf : X → L2(T ). This operator maps a sample x ∈ X to a target confidence
function s(t) = Sf{x}(t), defined on the continuous interval [0, T ). Here, s(t) ∈ R
is the confidence score of the target at the location t ∈ [0, T ) in the image.
Similar to other discriminative methods, the target is localized by maximizing
the confidence scores in an image region. The key difference in our formulation
is that the confidences are defined on a continuous spatial domain. Therefore,
our formulation can be used to localize the target with higher accuracy.

In our continuous formulation, the operator Sf is parametrized by a set
of convolution filters f = (f1, . . . , fD) ∈ L2(T )D. Here, fd ∈ L2(T ) is the
continuous filter for feature channel d. We define the convolution operator as,

Sf{x} =

D∑
d=1

fd ∗ Jd
{
xd
}
, x ∈ X . (3)

Here, each feature channel is first interpolated using (2) and then convolved
with its corresponding filter. Note that the convolutions are performed in the
continuous domain, as defined in (1). In the last step, the convolution responses
from all filters are summed to produce the final confidence function.

In the standard DCF, each training sample is labeled by a discrete function
that represents the desired convolution output. In contrast, our samples xj ∈ X
are labeled by confidence functions yj ∈ L2(T ), defined in the continuous spatial
domain. Here, yj is the desired output of the convolution operator Sf{xj} applied
to the training sample xj . This enables sub-pixel accurate information to be
incorporated in the learning. The filter f is trained, given a set of m training
sample pairs {(xj , yj)}m1 ⊂ X × L2(T ), by minimizing the functional,

E(f) =

m∑
j=1

αj ‖Sf{xj} − yj‖2 +

D∑
d=1

∥∥wfd∥∥2 . (4)

Here, the weights αj ≥ 0 control the impact of each training sample. We ad-
ditionally include a spatial regularization term, similar to [11], determined by
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the penalty function w. This regularization enables the filter to be learned on
arbitrarily large image regions by controlling the spatial extent of the filter f .
Spatial regions typically corresponding to background features are assigned a
large penalty in w, while the target region has small penalty values. Thus, w en-
codes the prior reliability of features depending on their spatial location. Unlike
[11], the penalty function w is defined on the whole continuous interval [0, T ) and
periodically extended to w ∈ L2(T ). Hence,

∥∥wfd∥∥ <∞ is required in (4). This
is implied by our later assumption of w having finitely many non-zero Fourier
coefficients ŵ[k]. Next, we derive the procedure to train the continuous filter f ,
using the proposed formulation (4).

3.3 Training the Continuous Filter

To train the filter f , we minimize the functional (4) in the Fourier domain. By
using results from Fourier analysis it can be shown1 that the Fourier coefficients

of the interpolated feature map are given by Ĵd
{
xd
}

[k] = Xd[k]b̂d[k]. Here,

Xd[k] :=
∑Nd−1
n=0 xd[n]e

−i 2π
Nd

nk
, k ∈ Z is the discrete Fourier transform (DFT)

of xd. By using linearity and the convolution property in section 3.1, the Fourier
coefficients of the output confidence function (3) are derived as

Ŝf{x}[k] =

D∑
d=1

f̂d[k]Xd[k]b̂d[k] , k ∈ Z . (5)

By applying Parseval’s formula to (4) and using (5), we obtain

E(f) =

m∑
j=1

αj

∥∥∥∥∥
D∑
d=1

f̂dXd
j b̂d − ŷj

∥∥∥∥∥
2

`2

+
D∑
d=1

∥∥∥ŵ ∗ f̂d∥∥∥2
`2
. (6)

Hence, the functional E(f) can equivalently be minimized with respect to the

Fourier coefficients f̂d[k] for each filter fd. We exploit the Fourier domain for-
mulation (6) to minimize the original loss (4).

For practical purposes, the filter f needs to be represented by a finite set
of parameters. One approach is to employ a parametric model to represent an
infinite number of coefficients. In this work, we instead obtain a finite representa-
tion by minimizing (6) over the finite–dimensional subspace V = span{ek}K1

−K1
×

. . .× span{ek}KD−KD ⊂ L
2(T )D. That is, we minimize (6) with respect to the co-

efficients {f̂d[k]}Kd−Kd , while assuming f̂d[k] = 0 for |k| > Kd. In practice, Kd

determines the number of filter coefficients f̂d[k] to be computed for feature
channel d during learning. Increasing Kd leads to a better estimate of the filter
fd at the cost of increased computations and memory consumption. In our ex-
periments, we set Kd =

⌊
Nd
2

⌋
such that the number of stored filter coefficients

for channel d equals the spatial resolution Nd of the training sample xd.

1 See the supplementary material for a detailed derivation.
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To derive the solution to the minimization problem (6) subject to f ∈ V , we

introduce the vector of non-zero Fourier coefficients f̂d = (f̂d[−Kd] · · · f̂d[Kd])
T ∈

C2Kd+1 and define the coefficient vector f̂ =
[
(f̂1)T · · · (f̂D)T

]T
. Further, we de-

fine ŷj = (ŷj [−K] · · · ŷj [K])T be the vectorization of the K := maxdKd first
Fourier coefficients of yj . To simplify the regularization term in (6), we let L be
the number of non-zero coefficients ŵ[k], such that ŵ[k] = 0 for all |k| > L. We
further define Wd to be the (2Kd + 2L+ 1)× (2Kd + 1) Toeplitz matrix corre-

sponding to the convolution operator Wdf̂
d = vec ŵ ∗ f̂d. Finally, let W be the

block-diagonal matrix W = W1 ⊕ · · · ⊕WD. The minimization of the functional
(6) subject to f ∈ V is equivalent to the following least squares problem,

EV (f̂) =

m∑
j=1

αj

∥∥∥Aj f̂ − ŷj

∥∥∥2
2

+
∥∥∥W f̂

∥∥∥2
2
. (7)

Here, the matrix Aj = [A1
j · · ·ADj ] has 2K + 1 rows and contains one diagonal

block Adj per feature channel d with 2Kd + 1 columns containing the elements

{Xd
j [k]b̂d[k]}Kd−Kd . In (7), ‖ · ‖2 denotes the standard Euclidian norm in CM .

To obtain a simple expression of the normal equations, we define the sample
matrix A = [AT

1 · · ·AT
D]T, the diagonal weight matrix Γ = α1I ⊕ · · · ⊕ αDI and

the label vector ŷ = [ŷT
1 · · · ŷT

D]T. The minimizer of (7) is found by solving the
normal equations, (

AHΓA+WHW
)
f̂ = AHΓ ŷ . (8)

Here, H denotes the conjugate-transpose of a matrix. Note that (8) forms a sparse
linear equation system if w has a small number of non-zero Fourier coefficients
ŵ[k]. In our object tracking framework, presented in section 4.2, we employ
the Conjugate Gradient method to iteratively solve (8). For our feature point
tracking approach, presented in section 4.3, we use a single-channel feature map
and a constant penalty function w for improved efficiency. This results in a
diagonal system (8), which can be efficiently solved by a direct computation.

3.4 Desired Confidence and Interpolation Function

Here, we describe the choice of the desired convolution output yj and the in-
terpolation function bd. We construct both yj and bd by periodically repeating
functions defined on the real line. In general, the T -periodic repetition of a
function g is defined as gT (t) =

∑∞
−∞ g(t − nT ). In the derived Fourier do-

main formulation (6), the functions yj and bd are represented by their respective
Fourier coefficients. The Fourier coefficients of a periodic repetition gT can be
retrieved from the continuous Fourier transform ĝ(ξ) of g(t) as ĝT [k] = 1

T ĝ( kT ).2

We use this property to compute the Fourier coefficients of yj and bd.

To construct the desired convolution output yj , we let uj ∈ [0, T ) denote the
estimated location of the target object or feature point in sample xj . We define

yj as the periodic repetition of the Gaussian function exp
(
− (t−uj)2

2σ2

)
centered
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at uj . This provides the following expression for the Fourier coefficients,

ŷj [k] =

√
2πσ2

T
exp

(
−2σ2

(
πk

T

)2

− i2π
T
ujk

)
. (9)

The variance σ2 is set to a small value to obtain a sharp peak. Further, this
ensures a negligible spatial aliasing. In our work, the functions bd are constructed
based on the cubic spline kernel b(t). The interpolation function bd is set to the
periodic repetition of a scaled and shifted version of the kernel b

(
Nd
T

(
t− T

2Nd

))
, to

preserve the spatial arrangement of the feature pyramid. The Fourier coefficients
of bd are then obtained as b̂d[k] = 1

Nd
exp

(
− i πNd k

)
b̂
(
k
Nd

)
.2

3.5 Generalization to Higher Dimensions

The proposed formulation can be extended to domains of arbitrary number
of dimensions. For our tracking applications we specifically consider the two-
dimensional case, but higher-dimensional spaces can be treated similarly. For
images, we use the space L2(T1, T2) of square-integrable periodic functions of two
variables g(t1, t2). The complex exponentials are then given by ek1,k2(t1, t2) =

ei
2π
T1
k1t1ei

2π
T2
k2t2 . For the desired convolution output yj , we employ a 2-dimensional

Gaussian function. Further, the interpolation functions are obtained as a sep-
arable combination of the cubic spline kernel, i.e. b(t1, t2) = b(t1)b(t2). The
derivations presented in section 3.3 also hold for the higher dimensional cases.

4 Our Tracking Frameworks

We apply our continuous learning formulation for two problems: visual object
tracking and feature point tracking. We first present the localization procedure,
which is based on maximizing the continuous confidence function. This is shared
for both the object and feature point tracking frameworks.

4.1 Localization Step

Here, the aim is to localize the tracked target or feature point using the learned
filter f . This is performed by first extracting a feature map x ∈ X from the region
of interest in an image. The Fourier coefficients of the confidence score function
s = Sf{x} are then calculated using (5). We employ a two-step approach for
maximizing the score s(t) on the interval t ∈ [0, T ). To find a rough initial
estimate, we first perform a grid search, where the score function is evaluated at
the discrete locations s

(
Tn

2K+1

)
for n = 0, . . . , 2K. This is efficiently implemented

as a scaled inverse DFT of the non-zero Fourier coefficients ŝ[k], k = −K, . . . ,K.
The maximizer obtained in the grid search is then used as the initialization for
an iterative optimization of the Fourier series expansion s(t) =

∑K
−K ŝ[k]ek(t).

We employ the standard Newton’s method for this purpose. The gradient and
Hessian are computed by analytic differentiation of s(t).

2 Further details are given in the supplementary material.
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4.2 Object Tracking Framework

We first present the object tracking framework based on our continuous learning
formulation introduced in section 3.2. We employ multi-resolution feature maps
xj extracted from a pre-trained deep network.3 Similar to DCF based trackers
[11, 13, 24], we extract a single training sample xj in each frame. The sample is
extracted from an image region centered at the target location and the region
size is set to 52 times the area of the target box. Its corresponding importance
weight is set to αj =

αj−1

1−λ using a learning rate parameter λ = 0.0075. The
weights are then normalized such that

∑
j αj = 1. We store a maximum of

m = 400 samples by replacing the sample with the smallest weight. The Fourier
coefficients ŵ of the penalty function w are computed as described in [11]. To
detect the target, we perform a multi-scale search strategy [11, 31] with 5 scales
and a relative scale factor 1.02. The extracted confidences are maximized using
the grid search followed by five Newton iterations, as described in section 4.1.

The training of our continuous convolution filter f is performed by iteratively
solving the normal equations (8). The work of [11] employed the Gauss-Seidel
method for this purpose. However, this approach suffers from a quadratic com-
plexity O(D2) in the number of feature channels D. Instead, we employ the
Conjugate Gradient (CG) [37] method due to its computational efficiency. Our
numerical optimization scales linearly O(D) and is therefore especially suitable
for high-dimensional deep features. In the first frame, we use 100 iterations to
find an initial estimate of the filter coefficients f̂ . Subsequently, 5 iterations per
frame are sufficient by initializing CG with the current filter.2

4.3 Feature Point Tracking Framework

Here, we describe the feature point tracking framework based on our learning
formulation. For computational efficiency, we assume a single-channel feature
map (D = 1), e.g. a grayscale image, and a constant penalty function w(t) = β.
Under these assumptions, the normal equations (8) form a diagonal system of
equations. The filter coefficients are directly obtained as,

f̂ [k] =

∑M
j=1 αjXj [k]b̂[k]ŷj [k]∑M

j=1 αj
∣∣Xj [k]b̂[k]

∣∣2 + β2
, k = −K, . . . ,K . (10)

Here, we have dropped the feature dimension index for the sake of clarity. In
this case (single feature channel and constant penalty function), the training
equation (10) resembles the original MOSSE filter [5]. However, our continuous
formulation has several advantages compared to the original MOSSE. Firstly, our
formulation employs an implicit interpolation model, given by b̂. Secondly, each
sample is labeled by a continuous-domain confidence yj , that enables sub-pixel
information to be incorporated in the learning. Thirdly, our convolution operator
outputs continuous confidence functions, allowing accurate sub-pixel localization
of the feature point. In our experiments, we show that the advantages of our
continuous formulation are crucial for accurate feature point tracking.

3 We use imagenet-vgg-m-2048, available at: http://www.vlfeat.org/matconvnet/.
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Table 1. A baseline comparison when using different combinations of convolutional
layers in our object tracking framework. We report the mean OP (%) and AUC (%) on
the OTB-2015 dataset. The best results are obtained when combining all three layers
in our framework. The results clearly show the importance of multi-resolution deep
feature maps for improved object tracking performance.

Layer 0 Layer 1 Layer 5 Layers 0, 1 Layers 0, 5 Layers 1, 5 Layers 0, 1, 5

Mean OP 58.8 78.0 60.0 77.8 70.7 81.8 82.4
AUC 49.9 65.8 51.1 65.7 59.0 67.8 68.2

5 Experiments

We validate our learning framework for two applications: tracking of objects and
feature points. For object tracking, we perform comprehensive experiments on
three datasets: OTB-2015 [46], Temple-Color [32], and VOT2015 [29]. For feature
point tracking, we perform extensive experiments on the MPI Sintel dataset [7].

5.1 Baseline Comparison

We first evaluate the impact of fusing multiple convolutional layers from the deep
network in our object tracking framework. Table 1 shows the tracking results,
in mean overlap precision (OP) and area-under-the-curve (AUC), on the OTB-
2015 dataset. OP is defined as the percentage of frames in a video where the
intersection-over-union overlap exceeds a threshold of 0.5. AUC is computed
from the success plot, where the mean OP over all videos is plotted over the
range of thresholds [0, 1]. For details about the OTB protocol, we refer to [45].

In our experiments, we investigate the impact of the input RGB image layer
(layer 0), the first convolutional layer (layer 1) and the last convolutional layer
(layer 5). No significant gain in performance was observed when adding inter-
mediate layers. The shallow layer (layer 1) alone provides superior performance
compared to using only the deep convolutional layer (layer 5). Fusing the shal-
low and deep layers provides a large improvement. The best results are obtained
when combining all three convolutional layers in our learning framework. We
employ this three-layer combination for all further object tracking experiments.

We also compare our continuous formulation with the discrete DCF for-
mulation by performing explicit resampling of the feature layers to a common
resolution. For a fair comparison, all shared parameters are left unchanged. The
layers (0, 1 and 5) are resampled with bicubic interpolation such that the data
size of the training samples is preserved. On OTB-2015, the discrete DCF with
resampling obtains an AUC score of 47.7%, compared to 68.2% for our continu-
ous formulation. This dramatic reduction in performance is largely attributed to
the reduced resolution in layer 1. To mitigate this effect, we also compare with
only resampling layers 0 and 5 to the resolution of layer 1. This improves the
result of the discrete DCF to 60.8% in AUC, but at the cost of a 5-fold increase
in data size. Our continuous formulation still outperforms the discrete DCF as
it avoids artifacts introduced by explicit resampling.
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Table 2. A Comparison with state-of-the-art methods on the OTB-2015 and Temple-
Color datasets. We report the mean OP (%) for the top 10 methods on each dataset.
Our approach outperforms DeepSRDCF by 5.1% and 5.0% respectively.

DSST SAMF TGPR MEEM LCT HCF Staple SRDCF SRDCFdecon DeepSRDCF C-COT

OTB-2015 60.6 64.7 54.0 63.4 70.1 65.5 69.9 72.9 76.7 77.3 82.4
Temple-Color 47.5 56.1 51.6 62.2 52.8 58.2 63.0 62.2 65.8 65.4 70.4
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Fig. 2. Success plots showing a comparison with state-of-the-art on the OTB-2015 (a)
and Temple-Color (b) datasets. Only the top 10 trackers are shown for clarity. Our
approach improves the state-of-the-art by a significant margin on both these datasets.

5.2 OTB-2015 Dataset

We validate our Continuous Convolution Operator Tracker (C-COT) in a com-
prehensive comparison with 20 state-of-the-art methods: ASLA [25], TLD [26],
Struck [21], LSHT [22], EDFT [14], DFT [41], CFLB [18], ACT [13], TGPR
[19], KCF [24], DSST [9], SAMF [31], MEEM [47], DAT [40], LCT [36], HCF
[35], Staple [3] and SRDCF [11]. We also compare with SRDCFdecon, which
integrates the adaptive decontamination of the training set [12] in SRDCF, and
DeepSRDCF [10] employing activations from the first convolutional layer.
State-of-the-art Comparison: Table 2 (first row) shows a comparison with
state-of-the-art methods on the OTB-2015 dataset.4 The results are reported
as mean OP over all the 100 videos. The HCF tracker, based on hierarchical
convolutional features, obtains a mean OP of 65.5%. The DeepSRDCF employs
the first convolutional layer, similar to our baseline “Layer 1” in table 1, and
obtains a mean OP of 77.3%. Our approach achieves the best results with a
mean OP of 82.4%, significantly outperforming DeepSRDCF by 5.1%.

Figure 2a shows the success plot on the OTB-2015 dataset. We report the
AUC score for each tracker in the legend. The DCF-based trackers HCF and
Staple obtain AUC scores of 56.6% and 58.4% respectively. Among the com-
pared methods, the SRDCF and its variants SRDCFdecon and DeepSRDCF

4 Detailed results are provided in the supplementary material.
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Fig. 3. An evaluation of the spatial (left) and temporal (right) robustness to initial-
izations on the OTB-2015 dataset. We compare the top 10 trackers. Our approach
demonstrates superior robustness compared to state-of-the-art methods.

provide the best results, all obtaining AUC scores above 60%. Overall, our tracker
achieves the best results, outperforming the second best method by 3.9%.
Robustness to Initialization: We evaluate the robustness to initializations
using the protocol provided by [46]. Each tracker is evaluated using two differ-
ent initialization strategies: spatial robustness (SRE) and temporal robustness
(TRE). The SRE criteria initializes the tracker with perturbed boxes, while the
TRE criteria starts the tracker at 20 frames. Figure 3 provides the SRE and TRE
success plots. Our approach obtains consistent improvements in both cases.

5.3 Temple-Color Dataset

Here, we evaluate our approach on the Temple-Color dataset [32] containing 128
videos. The second row of table 2 shows a comparison with state-of-the-art meth-
ods. The DeepSRDCF tracker provides a mean OP score of 65.4%. MEEM and
SRDCFdecon obtain mean OP scores of 62.2% and 65.8% respectively. Different
from these methods, our C-COT does not explicitly manage the training set to
counter occlusions and drift. Our approach still improves the start-of-the-art by
a significant margin, achieving a mean OP score of 70.4%. A further gain in
performance is expected by incorporating the unified learning framework [12] to
handle corrupted training samples. In the success plot in Figure 2b, our method
obtains an absolute gain of 3.8% in AUC compared to the previous best method.

5.4 VOT2015 Dataset

The VOT2015 dataset [29] consists of 60 challenging videos compiled from a
set of more than 300 videos. Here, the performance is measured both in terms
of accuracy (overlap with the ground-truth) and robustness (failure rate). In
VOT2015, a tracker is restarted in the case of a failure. We refer to [29] for details.
Table 3 shows the comparison of our approach with the top 10 participants in the
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Table 3. Comparison with state-of-the-art methods on the VOT2015 dataset. The
results are presented in terms of robustness and accuracy. Our approach provides im-
proved robustness with a significant reduction in failure rate.

S3Tracker RAJSSC Struck NSAMF SC-EBT sPST LDP SRDCF EBT DeepSRDCF C-COT

Robustness 1.77 1.63 1.26 1.29 1.86 1.48 1.84 1.24 1.02 1.05 0.82
Accuracy 0.52 0.57 0.47 0.53 0.55 0.55 0.51 0.56 0.47 0.56 0.54

challenge according to the VOT2016 rules [28]. Among the compared methods,
RAJSSC achieves favorable results in terms of accuracy, at the cost of a higher
failure rate. EBT achieves the best robustness among the compared methods.
Our approach improves the robustness with a 20% reduction in failure rate,
without any significant degradation in accuracy.

5.5 Feature Point Tracking

We validate our approach for robust and accurate feature point tracking. Here,
the task is to track distinctive local image regions. We perform experiments
on the MPI Sintel dataset [7], based on the 3D-animated movie “Sintel”. The
dataset consists of 23 sequences, featuring naturalistic and dynamic scenes with
realistic lighting and camera motion blur. The ground-truth dense optical flow
and occlusion maps are available for each frame. Evaluation is performed by
selecting approximately 2000 feature points in the first frame of each sequence.
We use the Good Features to Track (GFTT) [42] feature selector, but discard
points at motion boundaries due to their ambiguous motion. The ground-truth
tracks are then generated by integrating flow vectors over the sequence. The flow
vectors are obtained by a bilinear interpolation of the dense ground-truth flow.
We terminate the ground-truth tracks using the provided occlusion maps.

We compare our approach to MOSSE [5] and KLT [34, 44]. The OpenCV
implementation of KLT, used in our experiments, employs a pyramidal search
[6] to accommodate for large translations. For a fair comparison, we adopt a sim-
ilar pyramid approach for our method and MOSSE, by learning an independent
filter for each pyramid level. Further, we use the window size of 31 × 31 pixels
and 3 pyramid levels for all methods. For both our method and MOSSE we use
a learning rate of λ = 0.1 and set the regularization parameter to β = 10−4. For
the KLT we use the default settings in OpenCV. Unlike ours and the MOSSE
tracker, the KLT tracks feature points frame-to-frame without memorizing ear-
lier appearances. In addition to our standard tracker, we also evaluate a frame-
to-frame version (Ours-FF) of our method by setting the learning rate to λ = 1.

For quantitative comparisons, we use the endpoint error (EPE), defined as
the Euclidian distance between the tracked point and its corresponding ground-
truth location. Tracked points with an EPE smaller than 3 pixels are regarded as
inliers. Figure 4 (left) shows the distribution of EPE computed over all sequences
and tracked points. We also report the average inlier EPE for each method in the
legend. Our approach achieves superior accuracy, with an inlier error of 0.449
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Fig. 4. Feature point tracking results on the MPI Sintel dataset. We report the end-
point error (EPE) distribution (left) and precision plot (center) over all sequences and
points. In the legends, we display the average inlier EPE and the inlier ratio for the
error distribution and precision plot respectively. Our approach provides consistent im-
provements, both in terms of accuracy and robustness, compared to existing methods.
The example frame (right) from the Sintel dataset visualizes inlier trajectories obtained
by our approach (red) along with the ground-truth (green).

pixels. We also provide the precision plot (Figure 4, center), where the fraction
of points with an EPE smaller than a threshold is plotted. The legend shows the
inlier ratio for each method. Our tracker achieves superior robustness in compar-
ison to the KLT, with an inlier ratio of 0.886. Compared to MOSSE, our method
obtains significantly improved precision at sub-pixel thresholds (< 1 pixel). This
clearly demonstrates that our continuous formulation enables accurate sub-pixel
feature point tracking, while being robust. Unlike the frame-to-frame KLT, our
method provides a principled procedure for updating the tracking model, while
memorizing old samples. The experiments show that already our frame-to-frame
variant (Ours-FF) provides a spectacular improvement compared to the KLT.
Hence, our gained performance is due to both the model update and the pro-
posed continuous formulation. On a desktop machine, our Matlab code achieves
real-time tracking of 300 points at a single scale, utilizing only a single CPU.

6 Conclusions

We propose a generic framework for learning discriminative convolution opera-
tors in the continuous spatial domain. We validate our framework for two prob-
lems: object tracking and feature point tracking. Our formulation enables the
integration of multi-resolution feature maps. In addition, our approach is capable
of accurate sub-pixel localization. Experiments on three object tracking bench-
marks demonstrate that our approach achieves superior performance compared
to the state-of-the-art. Further, our method obtains substantially improved ac-
curacy and robustness for real-time feature point tracking.

Note that, in this work, we do not use any video data to learn an application
specific deep feature representation. This is expected to further improve the
performance of our object tracking framework. Another research direction is to
incorporate motion-based deep features into our framework, similar to [20].
Acknowledgments: This work has been supported by SSF (CUAS), VR (EMC2),
CENTAURO, the Wallenberg Autonomous Systems Program, NSC and Nvidia.
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Abstract—Robust visual tracking is a challenging computer
vision problem, with many real-world applications. Most exist-
ing state-of-the-art approaches employ hand-crafted appearance
features, such as HOG or Color Names. Recently, deep RGB
features extracted from convolutional neural networks have been
successfully applied for tracking. Despite their success, these
features only capture appearance information. On the other
hand, motion cues provide discriminative and complementary
information that can improve tracking performance. Contrary
to visual tracking, deep motion features have been successfully
applied for action recognition and video classification tasks.
Typically, the motion features are learned by training a CNN
on optical flow images extracted from large amounts of labeled
videos.

This paper presents an investigation of the impact of deep
motion features in a tracking-by-detection framework. We fur-
ther show that hand-crafted, deep RGB, and deep motion
features contain complementary information. To the best of
our knowledge, we are the first to propose fusing appearance
information with deep motion features for visual tracking. Com-
prehensive experiments clearly suggest that our fusion approach
with deep motion features outperforms standard methods relying
on appearance information alone.

I. INTRODUCTION

Generic visual tracking is the problem of estimating the
trajectory of a target in a sequence of images. It is challenging
since only the initial position of the target is known. The
various applications of generic tracking range from surveil-
lance to robotics. Most state-of-the-art approaches follow the
tracking-by-detection paradigm, where a classifier or regressor
is discriminatively trained to differentiate the target from the
background. Recently, Discriminative Correlation Filter (DCF)
based methods [1], [2], [3], [4], [5] have shown excellent
performance for visual tracking. These approaches efficiently
train a correlation filter to estimate the classification confi-
dences of the target. This is performed by considering all
cyclic shifts of the training samples and exploiting the fast
Fourier transform (FFT) at the training and detection steps. In
this work, we base our approach on the DCF framework.

DCF based trackers typically employ hand-crafted appear-
ance features, such as HOG [2], [4], Color Names [6], or
combinations of these features [7]. Recently, deep Convolu-
tional Neural Networks (CNNs) has been successfully applied
in DCF based trackers [5], [8]. A CNN applies a sequence
of convolution, normalization, and pooling operations on the
input RGB patch. The parameters of the network are trained
using large amounts of labeled images, such as the ImageNet
dataset. Deep convolutional features from pre-trained networks
have been shown to be generic [9], and therefore also appli-
cable for visual tracking.

Appearance and deep motion features Only appearance features

Fig. 1. A comparison of using combined appearance information (hand-
crafted HOG and deep RGB features) (in green) and our fusion of appearance
and deep motion features (in red). Tracking results are shown for three
example sequences: Box, Coupon and Skiing. Our fusion approach (red),
using deep motion features, achieves superior results in these scenarios where
appearance alone is insufficient.

Besides deep RGB features, deep motion features have been
successfully employed for action recognition [10], [11]. These
motion features are constructed by learning a CNN that takes
optical flow images as input. The network is trained using flow
data extracted from large amounts of labeled videos, such as
the UCF101 dataset [12]. Unlike deep RGB networks, these
deep flow networks capture high-level information about the
motion in the scene. To the best of our knowledge, deep motion
features are yet to be investigated for the problem of visual
tracking.

Tracking methods solely based on appearance information
struggle in scenarios with, for example, out-of-plane rotations
(figure 1 first row), background distractors with similar ap-
pearance (figure 1 second row), and distant or small objects
(figure 1 third row). In these cases, high-level motion cues
provide rich complementary information that can disambiguate
the target. While appearance features only encode static infor-
mation from a single frame, deep motion features integrate
information from the consecutive pair of frames used for
estimating the optical flow. Motion features can therefore
capture the dynamic nature of a scene that is complementary to
appearance features. This motivates us to investigate the fusion
of standard appearance features with deep motion features for
visual tracking.
Contributions: In this paper, we investigate the impact of
deep motion features for visual tracking. We use a deep optical
flow network that was pre-trained for action recognition. Our
approach does not require any additional labeled data for
training the network. We investigate fusing hand-crafted and
deep appearance features with deep motion features in a state-
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of-the-art DCF-based tracking-by-detection framework [3]. To
show the impact of motion features, we further evaluate the
fusion of different feature combinations.

Extensive experiments are performed on the OTB-2015
[13], Temple-Color [14], and VOT-2015 [15] datasets. On
OTB-2015, our fusion of appearance and deep motion features
significantly improves the baseline method, employing only
appearance features, by 3.4% in mean overlap precision. Our
fusion approach is further shown to advance the state-of-the-
art performance with an absolute gain of 6.8% and 5.8%
in mean overlap precision on OTB-2015 and Temple-Color
respectively. Figure 1 shows a comparison of our fusion with
deep motion features with the baseline method (employing
only appearance features).

II. RELATED WORK

Discriminative tracking methods [3], [5], [16], [17] typically
train a classifier or regressor for the task of differentiating
the target from the background. These methods are often
also termed tracking-by-detection approaches since they apply
a discriminatively trained detector. This detector is trained
online by extracting and labeling samples from the video
frames. The training samples are often represented by e.g. raw
image patches [1], [18], image histograms and Haar features
[16], color [6], [17], or shape features [2], [4].

Among tracking-by-detection approaches, the Discrimina-
tive Correlation Filter (DCF) based trackers have recently
shown excellent performance on standard tracking benchmarks
[15], [19]. The key for their success is the ability to efficiently
utilize limited data by including all shifts of local training
samples in the learning. DCF-based methods train a least-
squares regressor for predicting the target confidence scores
by utilizing the properties of circular correlation and the
fast Fourier transform (FFT). The MOSSE tracker [1] first
considered training a single-channel correlation filter based on
grayscale image samples of target and background appearance.
A remarkable improvement is achieved by extending the
MOSSE filter to multi-channel features. This can be performed
by either optimizing the exact filter for offline learning appli-
cations [20] or using approximative update schemes for online
tracking [2], [4], [6].

Despite their success, the DCF approaches are affected by
the periodic assumption of the training samples, leading to
negative boundary effects and a restricted training and search
region size. This problem has recently been addressed in [3] by
adding a spatial regularization term. While the original SRDCF
employs HOG features, the DeepSRDCF [8] investigates the
use of convolutional features from a deep RGB network in
the SRDCF tracker. In this work, we also base our tracking
framework on the SRDCF.

Other than the deep RGB appearance features, recent works
[11], [21], [22] have investigated the use of deep motion
features for action recognition. Generally, optical flow is
computed for each consecutive pair of frames. The resulting
optical flow is aggregated in the x-, y- direction and the flow
magnitude to construct a three channel image. A CNN is

then trained using these flow patches as input. Simonyan and
Zisserman [11] propose a two-stream ConvNet architecture to
integrate spatial and temporal networks. The network is trained
on multi-frame dense optical flow and multi-task learning is
employed to increase the amount of training samples. Gkioxari
and Malik [21] propose to use deep static and kinematic cues
for action localization in videos. The work of [22] propose
to combine pose-normalized deep appearance and motion
features for action recognition. Unlike action recognition,
existing tracking methods [5], [8] are limited to using only
appearance based deep RGB features. In this work, we propose
to combine appearance cue with deep motion information for
visual tracking.

III. BASELINE TRACKER

As a baseline tracker, we employ the SRDCF [3] framework,
which has recently been successfully used for integrating
single-layer deep features [8]. The standard DCF trackers
exploit the periodic assumption of the local feature map to
perform efficient training and detection using the FFT. How-
ever, this introduces unwanted boundary effects and restricts
the size of the image region used for training the model and
searching for the target. In the SRDCF, these shortcomings are
addressed by introducing a spatial regularization term in the
learning formulation. This enables training to be performed on
larger image regions, leading to a more discriminative model.

In the SRDCF framework, a convolution filter is discrim-
inatively learned based on training samples {(xk, yk)}tk=1.
Here, xk is a d-dimensional feature map with a spatial size
M ×N . We denote feature channel l of xk by xlk. Typically,
xk is extracted from an image region containing both the
target and large amounts of background information. The label
yk consists of the desired M × N confidence score function
at the spatial region corresponding to the sample xk. That
is, yk(m,n) ∈ R is the desired classification confidence at
location (m,n) in the feature map xk. We use a Gaussian
function centered at the target location in xk to determine
the desired scores yk. In the SRDCF formulation, the aim
is to train a multi-channel convolution filter f consisting of
one M × N filter f l per feature dimension l. The target
confidence scores for an M ×N feature map x are computed
as Sf (x) =

∑d
l=1 x

l∗f l. Here, ∗ denotes circular convolution.
To learn the filter f , the SRDCF formulation minimizes the

squared error between the confidence scores Sf (xk) and the
corresponding desired scores yk,

ε(f) =

t∑
k=1

αk

∥∥Sf (xk)− yk
∥∥2 + d∑

l=1

∥∥w · f l∥∥2. (1)

The weights αk determine the impact of each training sample
and · denotes point-wise multiplication. The SRDCF employs
a spatial regularization term determined by the penalty weight
function w. The filter is trained by minimizing the least squares
loss (1) in the Fourier domain using iterative sparse solvers.
We refer to [3] for more details.
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IV. VISUAL FEATURES

The visual feature representation is a core component of
a tracking framework. In this work, we investigate the use
of a combination of hand-crafted features, deep appearance
features and deep motion features for tracking.

A. Hand-crafted features

Hand-crafted features are typically used to capture low-level
information, such as shape, color or texture. The Histograms
of Oriented Gradients (HOG) is popularly employed for both
visual tracking [2], [3], [4] and object detection [23]. It
mainly captures shape information by calculating histograms
of gradient directions in a spatial grid of cells. The histogram
for each cell is then normalized with respect to neighboring
cells to add invariance.

Other than shape features, various color-based feature rep-
resentations have been commonly employed for tracking.
For instance, the use of simple color transformations [17],
[24] or color histograms. Recently, the Color Names (CN)
descriptor have been popularly employed for tracking due to its
discriminative power and compactness [6]. The CN descriptor
applies a pre-learned mapping from RGB to the probabilities
of 11 linguistic color names.

B. Deep features

Features extracted by a trained Convolutional Neural Net-
work (CNN) are known as deep features. The CNN consists
of a number of computational layers that perform convolution,
local normalization, and pooling operations on the input image
patch. The final layers are usually fully connected (FC) and
include an output classification layer. CNNs are typically
trained in a supervised manner on large datasets of labeled
images, such as ImageNet.

Feature representations learned by CNNs trained for a
particular vision problem (e.g. image classification) have been
shown to be generic and can be applied for a variety other
vision tasks. For this purpose, most works apply the activations
from the FC layer [25], [26]. Recently, activations form the
convolutional layers have shown improved results for image
classification [27], [28]. The deep convolutional features are
discriminative and posses high-level visual information, while
preserving spatial structure. Convolutional activations at a
specific layer form a multi-channel feature map, which can
be directly integrated into the SRDCF framework. Shallow-
layer activations encode low-level features at a high spatial
resolution, while deep layers contain high-level information at
a coarse resolution.

1) Deep RGB Features: For the RGB images we use the
imagenet-vgg-verydeep-16 network [25], with the MatCon-
vNet library [29]. This network contains 13 convolutional
layers. We investigate using both a shallow and a deep
convolutional layer. For the shallow RGB layer, we use the
activations from the fourth convolutional layer, after the Rec-
tified Linear Unit (ReLU) operation. It consists of 128 feature
channels and has a spatial stride of 2 pixels compared to the
input image patch. For the deep layer of the RGB network,

Fig. 2. Visualization of the features with highest energy from a shallow
and deep convolutional layer in the appearance (top row) and motion network
(bottom row). Appearance features are extracted from the raw RGB image (top
left) from Tiger2, and motion features from the corresponding optical flow
image (bottom left). In both cases, we show shallow and deep activations in
the corresponding first and second sub-rows respectively.

we use activations at the last convolutional layer, again after
the ReLU-operation. This layer consists of a 512-dimensional
feature map with a spatial stride of 16 pixels. Figure 2 shows
example activations from the shallow layer (first row) and deep
layer (second row) of the RGB network.

2) Deep Motion Features: The motion features are ex-
tracted using the approach described by [22]. We start by
calculating the optical flow for each frame, together with the
previous frame, according to [30]. The motion in the x- and
y-directions forms a 3-channel image together with the flow
magnitude. The values are adjusted to the interval [0, 255]. For
our experiments, we use the pre-trained optical flow network
provided by [10]. It is pre-trained on the UCF101 dataset [12]
for action recognition and contains five convolutional layers.
For the motion network, we only use the activations from the
deepest convolutional layer. Similar to the RGB network, we
extract the activations after the ReLU-operation. The resulting
feature map consists of 384 channels at a spatial stride of 16
pixel compared to the input. An example optical flow image
is displayed in figure 2, along with corresponding shallow
(third row) and deep (fourth row) activations from the motion
network.

V. OUR TRACKING FRAMEWORK

Here, we describe our tracking framework where we inves-
tigate the fusion of hand-crafted and deep appearance features
with deep motion features. Our framework is based on learning
an independent SRDCF model for each feature map. That is,
we learn one filter fj for each feature type j. In a frame k,
we extract new training samples xj,k for each feature type j
from the same image region centered at the estimated target
location. We use a quadratic training region with an area equal
to 52 times the area of the target box. For example, in our final
tracking approach we combine three different feature maps:
HOG x1,k, the deep RGB layer x2,k and the deep motion
layer x3,k (see section VI-A). The fused feature maps have
different dimensionalities dj and spatial resolutions, leading
to a different spatial sample size Mj × Nj for each feature
j. The label function yj,k for feature j is set to an Mj ×Nj
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TABLE I
COMPARISON OF DIFFERENT COMBINATIONS OF HAND-CRAFTED (HOG), DEEP RGB AND DEEP MOTION FEATURES ON THE OTB-2015 DATASET.

RESULTS ARE REPORTED IN TERMS OF MEAN OVERLAP PRECISION (OP) AND AREA-UNDER-THE-CURVE (AUC) IN PERCENT. THE TWO BEST RESULTS
ARE DISPLAYED IN RED AND BLUE FONT RESPECTIVELY. SHALLOW AND DEEP LAYERS OF THE RGB NETWORK ARE DENOTED RGB(S) AND RGB(D).
FOR EACH COMBINATION OF APPEARANCE FEATURES, WE ALSO REPORT THE RESULTS OBTAINED WHEN INCLUDING DEEP MOTION FEATURES. THE

FUSION WITH DEEP MOTION FEATURES SIGNIFICANTLY IMPROVES THE PERFORMANCE FOR ALL COMBINATIONS.

HOG RGB(s) RGB(d) RGB(s+d) HOG+RGB(s) HOG+RGB(d) HOG+RGB(s+d)

Mean OP (%) Without deep motion features 74.5 74.1 56.3 78 74.9 80.7 79.1
With deep motion features 81.3 81 58.9 81.1 79.5 84.1 82.2

Mean AUC (%) Without deep motion features 61.1 62.8 48.5 65.1 62.6 65.2 65.3
With deep motion features 65.7 66.4 49.7 66.7 65.6 67.4 66.4

sampled Gaussian function with its maximum centered at the
estimated target location.

To train the filters, we minimize the SRDCF objective
(1) for each feature type j independently. This is performed
similarly to [3] by first transforming (1) to the Fourier domain
using Parseval’s formula and then applying an iterative solver.
We also use exponentially decreasing sample weights αk [1],
[2], [3] with a learning rate of 0.01 and construct the penalty
function w as in [3].

To detect the target in a new frame, we first extract
feature maps zj centered at the estimated target location
in the previous frame. This is performed using the same
procedure as for training samples. The learned filters fj from
the previous frame can then be applied to each feature map
zj individually. However, the target confidence scores Sfj (zj)
is of size Mj × Nj and therefore have a different spatial
resolution for each feature type j. To fuse the confidence
scores obtained from each filter fj , we first interpolate the
scores from each filter to a pixel-dense grid. We then fuse
the scores by computing the average confidence value at each
pixel location. For efficiency, we use the Fourier interpolation
method employing complex exponential basis functions. Since
the filters are optimized in the Fourier domain, we directly
have the DFT coefficients f̂j of each filter. Using the DFT
convolution property, the DFT coefficients of the confidences
are obtained as Ŝfj (zj) =

∑dj

l=1 ẑ
l
j · f̂ lj .

The Fourier interpolation is implemented by first zero-
padding the DFT coefficients to the desired resolution and
then performing inverse DFT. Formally, we define the padding
operator PR×S that pads the DFT to the size R×S by adding
zeros at the high frequencies. We denote the inverse DFT
operator by F−1 and let J denote the number of feature maps
to be fused. The fused confidence scores s are computed as,

s =
1

J

J∑
j=1

F−1

{
PR×S

{
Ŝfj (zj)

}}
(2)

We obtain pixel-dense confidence scores (2) of the target by
setting R×S to be the size (in pixels) of the image region used
for extracting the feature maps xj,k. The new target location
is then estimated by maximizing the scores s(m,n) over the
pixel locations (m,n). To also estimate the target size, we
apply the filters at five scales with a relative scale factor of
1.02, similar to [3], [7].

VI. EXPERIMENTS

We validate our tracking framework by performing compre-
hensive experiments on three challenging benchmark datasets:
OTB-2015 [13] with 100 videos, Temple-Color [14] with 128
videos, and VOT2015 [15] with 60 videos.

A. Baseline Comparison
We investigate the impact of deep motion features by

evaluating different combinations of appearance and motion
representations on the OTB-2015 dataset. Table I shows a com-
parison of different feature combinations using mean overlap
precision (OP) and area-under-the-curve (AUC). OP is defined
as the percentage of frames in a video where the intersection-
over-union overlap exceeds a certain threshold. In the tables,
we report the OP at the threshold of 0.5, which corresponds to
the PASCAL criterion. The AUC score is computed from the
success plot, where OP is plotted over the range of thresholds
[0, 1]. We refer to [13] for further details about the evaluation
metrics.

The results show that using only HOG gives a mean OP
score of 74.5%. Interestingly, adding a deep RGB feature layer
(RGB(d)) improves the result by 6.2%, while adding a deep
motion feature layer provides an improvement of 6.8%. The
best result are obtained by combining all these three cues:
HOG, RGB(d) and deep motion. This combination achieves
an absolute gain of 9.6% in mean OP over using only HOG
and obtains the best AUC score of 67.4%. For the state-of-
the-art comparisons described in section VI-B and VI-C, we
employ this feature combination in our approach.

Another interesting comparison is that the result of using
HOG or a shallow RGB layer (RGB(s)) alone both provide
approximately the same mean OP and AUC score as their
combination. This indicates that HOG and RGB(s) do not
provide significant complementary information. On the other
hand, adding deep motion features to either of these repre-
sentations significantly improves the results. From our results,
it is apparent that adding deep motion features consistently
increases the tracking performance. Lastly, our results clearly
show that deep appearance and motion features are comple-
mentary and that the best results are obtained when fusing
these two cues.

B. OTB-2015 Dataset
We validate our approach by performing a comprehensive

comparison with 12 state-of-the-art trackers: Struck [16],
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TABLE II
COMPARISON WITH STATE-OF-THE-ART TRACKERS USING MEAN OP (%) ON THE OTB-2015 AND TEMPLE-COLOR DATASETS. THE TWO BEST RESULTS

ARE SHOW IN RED AND BLUE FONT RESPECTIVELY. OUR APPROACH SIGNIFICANTLY IMPROVES THE STATE-OF-THE-ART DEEPSRDCF TRACKER BY
6.8% AND 5.8% ON OTB-2015 AND TEMPLE-COLOR DATASETS RESPECTIVELY.

Struck CFLB ACT KCF DSST SAMF DAT MEEM LCT HCF SRDCF SRDCFdecon DeepSRDCF Ours

OTB-2015 52.9 44.9 49.6 54.9 60.6 64.7 36.4 63.4 70.1 65.5 72.9 76.5 77.3 84.1
Temple-Color 40.9 37.8 42.1 46.5 47.5 56.1 48.2 62.2 52.8 58.2 62.2 65 65.4 71.2
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Fig. 3. Success plots showing a comparison of our approach with state-of-the-
art methods on the OTB-2015 (a) and Temple-Color (b) datasets. For clarity,
only the top 10 trackers are shown. Our proposed method provides significant
improvements on both these datasets.

CFLB [21], LCT [31], ACT [6], KCF [4], DSST [2], SAMF
[7], DAT [32], MEEM [17], HCF [5], SRDCF [3] and SRD-
CFdecon [33]. We also compare with the DeepSRDCF [8],
that employs the shallow layer of a deep RGB network in the
SRDCF.

Table II (first row) presents a state-of-the-art comparison,
in mean OP, on the OTB-2015 dataset. The HCF tracker
employing an ensemble of deep RGB based appearance fea-
tures obtains a mean OP score of 65.5%. The SRDCF tracker
using hand-crafted appearance features achieves a mean OP
score of 72.9%. The DeepSRDCF employs appearance based
RGB features and obtains a mean OP score of 77.3%. Our
approach that combines hand-crafted and deep appearance
based features with deep motion features achieves state-of-
the-art results on this datset with a mean OP of 84.1%.
Figure 3a presents the success plot for top-10 trackers on the
OTB-2015 dataset. The area-under-the-curve (AUC) for each
method is shown in the legend. The SRDCF obtains an AUC
score of 60.5%. Among the existing methods, the DeepSRDCF
achieves an AUC score of 64.3%. Our approach significantly
outperforms the DeepSRDCF tracker by obtaining an AUC
score of 67.4%.

1) Attribute-based Comparison: We perform an attribute-
based analysis on the OTB-2015 dataset. Each video in the
dataset is annotated by 11 different attributes: illumination
variation, scale variation, occlusion, deformation, motion blur,
fast motion, in-plane and out-of-plane rotation, out-of-view,
background clutter and low resolution. Figure 4 shows success
plots for 4 attributes. Our approach provides consistent im-
provements on all 11 attributes. A significant improvement is
achieved in these scenarios: deformation (+6.4%), out of view
(+6.1%), and out-of-plane rotation (+4.7%), compared to the
best existing tracker. Figure 5 shows a qualitative comparison
with three state-of-the-art trackers.

C. Temple-Color Dataset

Next, we validate our proposed tracker on the challenging
Temple-Color dataset [14]. The dataset consists of 128 videos.
Table II (second row) presents a state-of-the-art comparison in
mean OP. The HCF tracker obtains a mean OP score of 58.2%.
The SRDCF tracker with hand-crafted appearance features
provides a mean OP score of 62.2%. The DeepSRDCF further
improves the results and obtains a mean OP score of 65.4%.
Our approach obtains state-of-the-art results on this datset with
a mean OP of 71.2%. A significant gain of 5.8% in mean OP is
obtained over the DeepSRDCF tracker. Figure 3b presents the
success plot for top-10 trackers on the Temple-Color dataset.
The area-under-the-curve (AUC) for each tracker is shown in
the legend of the plot. The SRDCF obtains an AUC score
of 51.6%. Among the existing methods, the DeepSRDCF
provides the best results and achieves an AUC score of 54.3%.
Our approach obtains state-of-the-art results by significantly
outperforming the DeepSRDCF tracker with a gain of 3%.

D. VOT2015 Dataset

Table III presents a state-of-the-art comparison on the
VOT2015 dataset [15] in comparison to the top 10 partici-
pants in the challenge according to the VOT2016 rules (see
http://votchallenge.net). The dataset consists of 60 challeng-
ing videos compiled from a set of more than 300 videos.
Here, the performance is measured in terms of accuracy
(overlap with the ground-truth) and robustness (failure rate).
The proposed method yields superior accuracy compared to
the previously most accurate method (RAJSSC) and superior
robustness compared to the previously most robust method
(EBT). Compared to previous SRDCF-based methods, both
accuracy and robustness are significantly improved.

VII. CONCLUSIONS

We have investigated the impact of deep motion features
in a DCF-based tracking framework. Existing approaches
are limited to using either hand-crafted or deep appearance
based features. We show that deep motion features provide
complementary information to appearance cue and their com-
bination leads to significantly improved tracking performance.
Experiments are performed on three challenging benchmark
tracking datasets: OTB-2015 with 100 videos, Temple-Color
with 128 videos, and VOT2015 with 60 videos. Our results
clearly demonstrate that fusion of hand-crafted appearance,
deep appearance and deep motion features leads to state-of-
the-art performance on both datasets.
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TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE VOT2015 DATASET. THE PROPOSED METHOD PROVIDES STATE-OF-THE-ART ACCURACY AND

ROBUSTNESS.

S3Tracker RAJSSC Struck NSAMF SC-EBT sPST LDP SRDCF EBT DeepSRDCF Ours

Robustness 1.77 1.63 1.26 1.29 1.86 1.48 1.84 1.24 1.02 1.05 0.92
Accuracy 0.52 0.57 0.47 0.53 0.55 0.55 0.51 0.56 0.47 0.56 0.58
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Fig. 4. Attribute-based analysis of our approach on the OTB-2015 dataset. Success plots are shown for 4 attributes. For clarity, we show the top 10 trackers in
each plot. The title of each plot indicates the number of videos labeled with the respective attribute. Our approach provides consistent improvements compared
to state-of-the-art methods on all 11 attributes.

Ours HCF MEEM DSST

Fig. 5. Frame-by-frame comparison with state-of-the-art trackers on Tiger2,
Lemming, Freeman and Human7. The deep motion features, employed in our
tracker, add complementary information when appearance features are less
distinctive, leading to favorable performance in scenarios with e.g. occlusions,
out-of-plane rotations and blur.
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[8] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Felsberg, “Convo-
lutional features for correlation filter based visual tracking,” in ICCV
Workshop, 2015.

[9] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: An astounding baseline for recognition,” in CVPR
Workshop, 2014.

[10] G. Gkioxari and J. Malik, “Finding action tubes,” in CVPR, 2015.
[11] K. Simonyan and A. Zisserman, “Two-stream convolutional networks

for action recognition in videos,” in NIPS, 2014.
[12] K. Soomro, A. Roshan Zamir, and M. Shah, “UCF101: A dataset of

101 human actions classes from videos in the wild,” in CRCV-TR-12-
01, 2012.

[13] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” PAMI,
2015.

[14] P. Liang, E. Blasch, and H. Ling, “Object tracking benchmark,” TIP,
2015.

[15] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Čehovin,
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Abstract. In this paper we introduce an efficient method to unwrap
multi-frequency phase estimates for time-of-flight ranging. The algorithm
generates multiple depth hypotheses and uses a spatial kernel density
estimate (KDE) to rank them. The confidence produced by the KDE
is also an effective means to detect outliers. We also introduce a new
closed-form expression for phase noise prediction, that better fits real
data. The method is applied to depth decoding for the Kinect v2 sensor,
and compared to the Microsoft Kinect SDK and to the open source driver
libfreenect2. The intended Kinect v2 use case is scenes with less than
8m range, and for such cases we observe consistent improvements, while
maintaining real-time performance. When extending the depth range to
the maximal value of 18.75m, we get about 52% more valid measurements
than libfreenect2. The effect is that the sensor can now be used in large
depth scenes, where it was previously not a good choice.

Keywords: Time-of-flight, Kinect v2, kernel-density-estimation

1 Introduction

Multi-frequency time-of-flight is a way to accurately estimate distance, that was
originally invented for Doppler RADAR [1]. More recently it has also found
an application in RGB-D sensors1 that use time-of-flight ranging, such as the
Microsoft Kinect v2 [2].

Depth from time-of-flight requires very accurate time-of-arrival estimation.
Amplitude modulation improves accuracy, by measuring phase shifts between the
received and emitted signals, instead of time-of-arrival. However, a disadvantage
with amplitude modulation is that it introduces a periodic depth ambiguity. By
using multiple modulation frequencies in parallel, the ambiguity can be resolved
in most cases, and the useful range can thus be extended.

We introduce an efficient method to unwrap multi-frequency phase estimates
for time-of-flight ranging. The algorithm uses kernel density estimation (KDE)
in a spatial neighbourhood to rank different depth hypotheses. The KDE also
doubles as a confidence measure which can be used to detect and suppress bad
pixels. We apply our method to depth decoding for the Kinect v2 sensor. For

1 RGB-D sensors output both colour (RGB) and depth (D) images.
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Fig. 1. Single frame output on scene with greater than 18.75m depth range. Left:
libfreenect2, Center: proposed method. Right: corresponding RGB image. Pixels sup-
pressed by outlier rejection are shown in green. The proposed method has more valid
depth points than libfreenect2 resulting in a denser and more well defined depth scene.
While the suppressed areas are clean from outliers for the proposed method, the
libfreenect2 image is covered in salt and pepper noise.

large depth scenes we see a significant increase in coverage of about 52% more
valid pixels compared to libfreenect2. See figure 1 for a qualitative comparison.
For 3D modelling with Kinect fusion [3], this results in fewer outlier points and
more complete scene details. While the method is designed with the Kinect v2
in mind, it is also applicable to multi-frequency ranging techniques in general.

1.1 Related Work

The classic solution to the multi-frequency phase unwrapping problem, is to use
the Chinese reminder theorem (CRT). This method is fast, but implicitly as-
sumes noise free data, and in [1] it is demonstrated that by instead generating
multiple unwrappings for each frequency, and then performing clustering along
the range axis, better robustness to noise is achieved. However, due to its sim-
plicity, CRT is still advocated, e.g. in [4, 5], and is also used in the Kinect v2
drivers.

Simultaneous unwrapping of multiple phases with different frequencies is a
problem that also occurs in fringe pattern projection techniques [6, 5]. The al-
gorithms are not fully equivalent though, as the phase is estimated by different
means, and the relationship between phase and depth is different.

Another way to unwrap the time-of-flight phase shift is to use surface reflec-
tivity constraints. As the amplitude associated with each phase measurement is
a function of object distance and surface reflectivity, a popular approach in the
literature is to assume locally constant reflectivity. Under this assumption, the
depth can be unwrapped using e.g. a Markov Random Field (MRF) formulation
with a data term and a reflectivity smoothness term. In [7], many different such
unwrapping methods are discussed. A recent extension of this is [8], where dis-
tance, surface albedo and also the local surface normal are used to predict the
reflectance.

The multi-frequency and reflectivity approaches are combined in [9] where a
MRF with both reflectivity, and dual frequency data terms are used.
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Detection of multipath interference (i.e. measurement problems due to light
reflected from several different world locations reaching the same pixel) is studied
in [10]. If four or more frequencies are used, pixels with multipath effects can
be detected and suppressed. Recently in [11], a multipath detection algorithm
based on blind source separation was applied to the Kinect v2. This required the
firmware of the Kinect v2 to be modified to emit and receive at 5 frequencies
instead of the default 3. As firmware modification currently requires reverse
engineering of the transmission protocol we have not pursued this line of research.

In [12] a simulator for ToF measurements is developed and used to evaulate
performance of a MRF that does simultaneous unwrapping and denoising using
a wavelet basis. The performance on real data is however not shown.

Noise on the phase measurements is analyzed in [13] and it is suggested that
the variance of phase is predicted by sensor variance divided by the phase ampli-
tude squared. In this paper we derive a new model for phase noise that fits better
with real data and utilize it as a measure of confidence for the measurements.
In [12] a Gaussian mixture model for sensor noise is also derived, but its efficacy
is never validated on real sensor data.

1.2 Structure

The paper is organized as follows: In section 2 we describe how multi-frequency
time-of-flight measurements are used to sense depth. In section 3 we describe
how we extend this by generating multiple hypotheses and selecting one based
on kernel density estimation. We give additional implementation details and
compare our method to other approaches in section 4. The paper concludes with
a discussion and outlook in section 5.

2 Depth Decoding

In time-of-flight sensors, an amplitude modulated light signal is emitted to be
reflected on objects in the environment. The reflected signal is then captured
in the pixel array of the sensor, where it is correlated with the reference signal
driving the light emitter. On the Kinect v2 this is achieved on the camera chip
by using quantum efficiency modulation and integration[14, 15] resulting in a
voltage value vk. In the general case N different reference signals are used, each
phase shifted 2π

N radians from the others [13]. Often N = 4 is used [12], but in
the Kinect v2 we have N = 3. The voltage values are used to calculate the phase
shift between the emitted and the received signals using the complex phase

z =
2

N

N−1∑
k=0

vke
−i(po+2πk/N) , (1)

where po is a common phase offset. This expression is derived using least squares
[13], and the actual phase shift and its corresponding amplitude are obtained as

φ = arg z and a = |z| . (2)
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The amplitude is proportional to the reflected signal strength, and increases
when the voltage values make consistent contributions to z. It is thus useful as
a measure of confidence in the decoded phase.

From the phase shift φ in (2) the time-of-flight distance can be calculated as

d =
cφ

4πfm
, (3)

where c is the speed of light, and fm is the used modulation frequency (see
e.g. [2]). This relationship holds both in multi-frequency RADAR [1] and RGB-D
time-of-flight. In fringe projection profilometry [6], phase and amplitude values
are also obtained for each frequency of the fringe pattern, resulting in a very
similar problem. However, the relationship between phase and depth is different
in this case.

The phase shift obtained from (2) is the true phase shift φ̃ modulo 2π. Thus
φ is ambiguous in an environment where d can be larger than c/(2fm). Finding
the correct period, i.e. n in the expression

φ̃ = φwrapped + 2πn , n ∈ N , (4)

is called phase unwrapping. To reduce measurement noise, and increase the range
in which φ is unambiguous, one can combine the phase measurements from
multiple modulated signals with different frequencies.

Figure 2 shows the phase to distance relation for the three amplitude-modul-
ated signals, with frequencies 16, 80 and 120 MHz, which is the setup used in
the Kinect v2 [2]. For each of the three frequencies, three phase shifts are used
to calculate a phase according to (2), and thus a total of nine measurements
are used in each depth calculation. In the figure, we see that if the phase shifts
are combined, a common wrap-around occurs at 18.75 meters. This is thus the
maximum range in which the Kinect v2 can operate without depth ambiguity.

As a final step, the phase shifts from the different modulation frequencies are
combined using a phase unwrapping procedure and a weighted average.

It is of critical importance that the phase is correctly unwrapped, as choosing
the wrong period will result in large depth errors. This is the topic of the following
sub-sections.

2.1 Phase unwrapping

Consider phase measurements of M amplitude modulated signals with different
modulation frequencies. From (3) we get the following relations:

d =
c (φ0 + 2πn0)

4πf0
=
c (φ1 + 2πn1)

4πf1
= · · · = c (φM−1 + 2πnM−1)

4πfM−1
⇐⇒ (5)

k0
2π
φ0 + k0n0 =

k1
2π
φ1 + k1n1 = . . . =

kM−1
2π

φM−1 + kM−1nM−1 (6)
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Fig. 2. Wrapped phases for Kinect v2, in the range 0 to 25 meters. Top to bottom: φ0,
φ1, φ2. The dashed line at 18.75 meters indicates the common wrap-around point for
all three phases. Just before this line we have n0 = 9, n1 = 1, and n2 = 14.

where {km}M−1m=0 are the least common multiples for {fm}M−1m=0 divided by the re-
spective frequency and {nm}M−1m=0 are the set of sought unwrapping coefficients.
Now (6) can be simplified to a set of constraints on pairs of unwrapping coeffi-
cients (ni, nj):

kini − kjnj =
kj
2π
φj −

ki
2π
φi,∀i, j ∈ [0,M − 1] and i > j. (7)

In total there are M(M − 1)/2 such equations. As the system is redundant,
the correct unwrapping cannot be obtained by e.g. Gaussian elimination and
in practice the equations are unlikely to hold due to measurement noise. The
constraints can however be used to define a likelihood for a specific unwrapping.

2.2 CRT based unwrapping

The ambiguity of the phase measurements can be resolved by applying a variant
of the Chinese reminder theorem (CRT) [4, 5] to one equation at a time in (7):

ni = ki · round

(
kjφj − kiφi

ki2π

)
(8)

φ̃i = φi + 2πni (9)

In the case of more than two frequencies the unwrapped phase φ̃i could be
used in (8) for the next equation in (7) to unwrap the next phase. This is sug-
gested and described in [5] and is also used in libfreenect2. In the end when all
equations have been used, the full unambiguous range of the combined phase
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measurements has been unwrapped. The CRT method is fast but sensitive to
noise as it unwraps each of the phase measurements in sequence. The conse-
quence of this is that an error made early on will be propagated.

2.3 Phase fusion

The unwrapped phase measurements are combined by using a weighted average:

t∗ =

M−1∑
m=0

kmφ̃m
(kmσφm)2

/(M−1∑
m=0

1

(kmσφm)2

)
, (10)

where σφm is the standard deviation of the noise in φm. The pseudo distance
estimate t∗ is later converted to a depth (i.e. distance in the forward direction),
using the intrinsic camera parameters.

3 Kernel Density based Unwrapping

In this paper, we propose a new method for multi-frequency phase unwrapping.
The method considers several fused pseudo distances t∗ (see (10)) for each pixel
location x, and select the one with the highest kernel density value [16]. Each such
hypothesis ti(x) is a function of the unwrapping coefficients n = (n0, . . . , nM−1).
The kernel density for a particular hypothesis ti(x) is a weighted sum of all
considered hypotheses in the spatial neighbourhood:

p(ti(x)) =

∑
j∈I,k∈N (x) wjkK(ti(x)− tj(xk))∑

j∈I,k∈N (x) wjk
. (11)

Here K(·) is the kernel, and wjk is a sample weight. The sets of samples to
consider are defined by the hypothesis indices I (e.g. I = {1, 2} if we have
two hypotheses in each pixel), and by the set of all spatial neighbours N (x) =
{k : ‖xk − x‖1 < r} where r is a square truncation radius. The hypothesis weight
wik is defined as

wik = g(x− xk, σ)p(ti(xk)|ni(xk))p(ti(xk)|ai(xk)) . (12)

The three factors in wik are:

– the spatial weight g(x−xk, σ), which is a Gaussian that downweights neigh-
bours far from the considered pixel location x.

– the unwrapping likelihood p(ti(x)|ni(x)), that depends on the consistency of
the pseudo-distance estimate (10) given the unwrapping vector
n = (n0, . . . , nM−1).

– the phase likelihood p(ti(x)|ai(x)), where ai = (a0, . . . , aM−1), are the am-
plitudes from (2). It defines the accuracy of the phase before unwrapping.
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The kernel in (11) is defined as:

K(x) = e−x
2/2h2

, (13)

where h is the kernel scale.
In the following sub-sections we will describe the three weight terms in more

detail. For simplicity of notation, we will drop the pixel coordinate argument x,
and e.g. write p(t∗) instead of p(t∗(x)).

3.1 Unwrapping likelihood

Due to measurement noise, the constraints in (7) are never perfectly satisfied.
We thus subtract the left-hand side from the right-hand side of these equations
to form residuals εk, one for each of the M(M−1)/2 constraints. These are then
used to define a cost for a given unwrapping vector n = (n0, . . . , nM−1):

J(n) =

M(M−1)/2∑
k=1

ε2k/σ
2
εk
. (14)

This cost function corresponds to the following unwrapping likelihood:

p(t∗|n) ∝ e−J(n)/(2s
2
1) , (15)

where t∗ is the fusion of the three unwrapped pseudo-distances, see (10), and s1
is a scaling factor to be determined. For normally distributed residuals, and the
Kinect v2 case of M = 3, the constraints in (7) imply:

σ2
ε1 =

(
k1σφ1

2π

)2

+

(
k0σφ0

2π

)2

(16)

σ2
ε2 =

(
k2σφ2

2π

)2

+

(
k0σφ0

2π

)2

(17)

σ2
ε3 =

(
k2σφ2

2π

)2

+

(
k1σφ1

2π

)2

. (18)

This gives us the weights in (14). The values of σφm could be predicted from the
phase amplitude am (more on this later), but they tend to deviate around a fixed
ratio, and we have observed better robustness of (15) if the ratio is always fixed.
We assume that the phase variances is equal for all modulation frequencies. This
assumption gives us their relative magnitudes, but not their absolute values,
which motivates the introduction of the parameter s1 in (15).

3.2 Multiple hypotheses

In contrast to the CRT approach to unwrapping, see section 2.2, we will consider
all meaningful unwrapping vectors n = (n0, . . . , nM−1) within the unambiguous
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range. A particular depth value corresponds to a unique unwrapping vector, but
with the introduction of noise, neigbouring unwrappings need to be considered at
wrap around points. For example, looking at the Kinect v2 case shown in figure
2, if n0 = n1 = 0, n2 should either be 0 or 1. In total 30 different hypotheses for
(n0, n1, n2) are constructed in this way. These can then be ranked by (15).

Compared with the CRT approach, that only considers one hypothesis, the
above approach is more expensive. On the other hand, the true maximum of
(15) is guaranteed to be checked.

In the low noise case, we can expect the hypothesis with the largest likelihood
according to (15) to be the correct one. This is however not necessarily the case
in general. Therefore a subset I of hypotheses with high likelihoods are saved
for further consideration, by evaluating the full kernel density (11).

3.3 Phase likelihood

The amplitude, a, produced by (2) can be used to accurately propagate a noise
estimate on the voltage values to noise in the phase estimate. In [13] this re-
lationship is analysed and an expression is derived that can only be computed
numerically. For practical use, [13] instead propose σ2

φ = 0.5(σv/a)2 as approxi-
mate propagation formula (for N = 4). For constant but unknown noise variance
on the voltage values σ2

v , the phase noise can be predicted from the amplitude,
as:

σφ = γ/a , (19)

where γ is a parameter to be determined. While propagation of noise from voltage
values to the complex phase vector z is linear, the final phase extraction is
not, and we will now derive a more accurate approximation using sigma-point
propagation [17]. Geometrically, phase extraction from the phase vector (2) is
a projection onto a circle, and thus the noise propagation is also a projection
of the noise distribution p(z) onto the circle, see figure 4 (a). p(z) is centered
around the true amplitude a, and sigma-point candidates are located on a circle
with radius σz. By finding the points where the circle tangents pass through the
origin, we get an accurate projection of the noise distribution.

The points of tangency can be found using the pole-polar relationship [18].
For points (x, y) and (x,−y) we get the expressions:

x = (a2 − σ2
z)/a and y =

σz
a

√
a2 − σ2

z . (20)

From these expressions, the phase noise can be predicted as:

σ̂φ = tan−1(y/x) = tan−1(
√

1/((a/σz)2 − 1)) , (21)

where σz is a model parameter to be determined. Values of a < σz invalidate
the geometric model in figure 4 (a), and for these we use (19) with γ = σzπ/2.

In libfreenect2, a bilateral filter is applied to the z vectors. The noise attenu-
ation this results in is amplitude dependent, but it can be accurately modelled
as a quadratic polynomial on a.

σ̂φ,bilateral = tan−1(y/x) = tan−1(
√

1/((γ0 + aγ1 + a2γ2)2 − 1)) , (22)
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We use the predicted phase noise to define a phase likelihood:

p(t∗|a) =

M−1∏
m=0

p(t∗|am) , where p(t∗|am) ∝ e−0.5σ̂
2
φm

/s22 . (23)

where s2 is a parameter to be tuned. The phase likelihood encodes the accuracy
of the phases before unwrapping.

3.4 Hypothesis selection

In each spatial position x, we rank the considered hypotheses ti, using the KDE
(kernel density estimate) defined in (11). The final hypothesis selection is then
made as:

i∗ = arg max
i∈I

p(ti) . (24)

For the selected hypothesis, p(ti
∗
) is also useful as a confidence measure that

can be thresholded to suppress the output in problematic pixels. However, if the
spatial support is small, e.g. 3 × 3, the weighted KDE occasionally encounters
sample depletion problems (only very bad samples in a neighbourhood). This
can be corrected by regularizing the confidence computation according to:

conf(ti) =

∑
k wkK(ti − tk)

max(pmin,
∑
k wk)

≈ p(ti) , (25)

where pmin is a small value, e.g. 0.5.

3.5 Spatial selection versus smoothing

The proposed KDE approach, see (11), selects the best phase unwrapping by
considering the distribution of hypotheses in the spatial neighbourhood of a
pixel. Note that the spatial neighbourhood is only used to select among differ-
ent hypotheses. This is different from a spatial smoothing, as is commonly used
in e.g. depth from disparity [19]. A connection to kernel based smoothing ap-
proaches, such as channel smoothing [20, 21] can be made by considering the
limit where the number of hypotheses is the continuous set of t-values in the
depth range of the sensor. The discrete selection in (24) will then correspond to
decoding of the highest peak of the PDF, and thus to channel smoothing. In the
experiments we will however use just |I| = 2, or 3 hypotheses per pixel, which
is far from this limit. After selection, the noise on each pixel is still uncorrelated
from the noise of its neighbours, and each pixel can thus still be considered an
independent measurement. This is beneficial when fusing data in a later step,
using e.g. Kinect Fusion [3].
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library(tuning) kitchen(test) lecture(test)

Fig. 3. Unwrapping ground truth for the three datasets. Top row: ground truth depth
maps. Green pixels are suppressed, and not used in the evaluation. Bottom row: cor-
responding images from the RGB camera.

4 Experiments

We apply the method to depth decoding for the Kinect v2 sensor, and compare
it to the Microsoft Kinect SDK2 in the following denoted Microsoft and to the
open source driver libfreenect2. A first visual result is shown in figure 1. As can
be seen in the figure, the proposed method has a better coverage in the depth
images than libfreenect2. Another clear distinction between the methods is that
libfreenect2 produces salt and pepper noise all over the image. See also [22] for
more examples, and corresponding RGB frames.

4.1 Implementation

The algorithm was implemented by modifying the libfreenect23 code for depth
calculations using OpenCL [23] for GPU acceleration. When running the pro-
posed pipeline with |I| = 2 on a Nvidia GeForce GTX 760 GPU, the frame rate
for the depth calculations is above 30 fps for spatial supports up to 17× 17. For
e.g. a 3× 3 support our method operates at 200 fps, which is marginally slower
than libfreenect2 (which also operates in a 3× 3 neighbourhood) at 245 fps. The
current implementation is however designed for ease of testing, and further speed
optimization is be possible.

2 Version 2.0.1409
3 As in opencl depth packet processor.cl Feb 18 2016 commit: 1d06d2db04a9
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4.2 Ground Truth for Unwrapping

We construct our own ground truth data, which is used for quantitatively eval-
uating the correctness of the phase unwrappings. The accuracy of the ground
truth must be good enough to tell a correct unwrapping from an incorrect one.
As we have 30 unwrapping candidates in an 18.75m range, the distance between
the candidates is on average 60cm. To ensure that no incorrect unwrappings
are accidentally counted as inliers, we require an accuracy of at least half the
candidate distance, i.e. better than 30cm.

The required accuracy can easily be met using the Kinect sensor itself. By
fusing many frames from the same camera pose, we can reduce the amount
of unwrapping errors, and also increase the accuracy in correctly unwrapped
measurements. For a given scene we place the camera at different locations cor-
responding to a spatial 3×3 grid. By fusing data from these poses we can detect
and suppress multipath responses, which vary with camera position. Further
details on the dataset generation can be found in the supplemental materials
[22].

4.3 Datasets

We have used the procedure in section 4.2 to collect three datasets with ground
truth depth, shown in figure 3. The kitchen dataset has a maximal depth of
6.7m, and is used to test the Kinect v2 under the intended usage with an 8m
depth limit. The lecture dataset has a maximal depth of 14.6m and is used to
evaluate methods without imposing the 8m limit. The library dataset is used
for parameter tuning, and has a maximal range of 17.0m. For each dataset, we
have additionally logged 25 raw-data frames from the central camera pose, using
a data logger in Linux, and another 25 output frames using the Microsoft SDK
v2 API in Windows.

4.4 Comparison of noise propagation models

The tuning dataset library was used to estimate the standard deviations σφ
of the individual phase measurements over 40 frames. The model parameters
in (19), (21) and (22) were found by minimizing the residuals of the corre-
sponding inverted expressions using non-linear least squares over all amplitude
measurements a. The inversion of the expressions reduced bias effects due to
large residuals for small amplitudes.

This procedure was performed for z with and without bilateral filtering (as
implemented in libfreenect2). Figure 4 ((b) and (c)) shows the resulting predic-
tions overlaid on the empirical distributions of the relation between the ampli-
tude and the phase standard deviation. We see that the models proposed in
(21) and (22) have a slightly better fit to the empirical distribution than [13] on
raw phase measurements. However, for bilateral filtered z, the quadratic model
suggested in expression (22) has the best fit. As bilateral filtering improves the
final performance this is the model used in our method.
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Fig. 4. (a): Geometrical illustration of the circle-tangents. (b): Predictions from raw
phase overlaid on empirical distribution. (c): Predictions from bilateral-filtered phase.

4.5 Outlier Rejection

libfreenect2 : outlier rejection is performed at several steps, each with one or
several tuned thresholds:

– Pixels where any of the amplitudes is below a threshold are suppressed.
– Pixels where the pseudo-distances differ in magnitude are suppressed. The

purpose of this is similar to (15), but an expression based on the cross-
product of the pseudo phases with a reference relation is used.

– Pixels with a large depth, or amplitude variance in their 3×3 neighbourhood
are suppressed.

– Pixels that deviate from their neighbours are suppressed.
– Pixels on edges in the voltage images are suppressed.

Proposed method: a single threshold is applied on the KDE-based confidence
measure in (25).

4.6 Parameter settings

The proposed method introduces the following parameters that needs to be set:

– the scaling s1 in (15)
– the scaling s2 in (23).
– the kernel scale h in (13).
– the spatial support r. (the Gaussian in (12) has a spatial support of (2r +

1)× (2r + 1) and σ = r/2.)
– the number of hypotheses |I|.

The method is not sensitive to the selection of s1, s2 and h, and thus the same
setting is used for all experiments. Unless otherwise stated, the parameters r = 5
and |I| = 2 are used. The effects of these parameters are discussed further in
the supplemental material [22].
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Fig. 5. Inlier and outlier rate plots. Each point or curve is the average over 25 frames.

4.7 Coverage Experiments

We have used the unwrapping datasets described in section 4.3 to compare the
methods in terms of inliers (correctly unwrapped points), and outliers (incor-
rectly unwrapped points). A point is counted as an inlier when a method outputs
a depth estimate which is closer than 30cm to the ground truth, and an outlier
otherwise. These counts are then divided by the number of valid points in the
ground truth to obtain inlier and outlier rates.

Figure 5 shows plots of inlier rate against outlier rate for our method, for
the full range of thresholds on the output confidence in (25). As a reference,
we also plot the output from Microsoft and libfreenect2, as well as libfreenect2
without the outlier threshold, and libfreenect2 where the hypothesis selection
is done by minimising (14), instead of using the CRT approach in section 2.2
(labelled I = 1 in the legend). As can be seen in figure 5 middle, the performance
of libfreenect2 and Microsoft are similar on short range scenes with a depth
limit (this is expected, as the libfreenect2 source mentions it being based on
disassembly of the Microsoft SDK).

As can be seen, the proposed method consistently has a higher inlier rate
at the same outlier rate, when compared to libfreenect2 with the same spatial
support, i.e. r = 1. When the spatial support size is increased, the improvement
is more pronounced.

Performance for scenes with larger depth is exemplified with the lecture
dataset. With the depth limit removed, we get significantly more valid measure-
ments at the same outlier rate. The Microsoft method has a hard limit of 8m
and cannot really compete on this dataset; it only reaches about 35% inlier rate.
The libfreenect2 method without the depth limit reaches 48% inliers, at a 1%
outlier rate. At the 1% outlier rate, the proposed method has a 73% inlier rate,
which is an relative improvement of 52% over libfreenect2.

The performance is improved slightly for |I| = 3 compared with |I| = 2.
While still having frame rates over 30 fps for a spatial support of r = 5, we
consider the costs to outweigh the small improvement, and thus favour the setting
of |I| = 2.
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Fig. 6. Meshes of lecture scene from KinFu. Left: unwrapped with libfreenect2. Right:
unwrapped with the proposed method.

4.8 Kinect Fusion

We have implemented a data-logger that saves all output from the Kinect v2 to
a file for later playback. This allows us to feed the Kinect Fusion implementation
KinFu in the Point Cloud Library [24] with Kinect v2 output unwrapped with
both libfreenect2 and the proposed method. Figure 6 shows two meshes obtained
in this way. As can be seen Kinect Fusion benefits from the proposed approach
by generating models with fewer outlier points, and consistently more complete
scene details. See [22] for more examples.

5 Concluding Remarks

This paper introduces a new multi-frequency phase unwrapping method based
on kernel density estimation of phase hypotheses in a spatial neighbourhood. We
also derive a new closed-form expression for prediction of phase noise and show
how to utilize it as a measure of confidence for the measurements.

Our method was implemented and tested extensively on the Kinect v2 time-
of-flight depth sensor. Compared to the previous methods in libfreenect2 and
Microsoft Kinect SDK v2 it consistently produces more valid measurements when
using the default depth limit of 8m, while maintaining real-time performance. In
large-depth environments, without the depth limit, the gains are however much
larger, and the number of valid measurements increases by 52% at the same
outlier rate.

As we have shown, the proposed method allows better 3D scanning of large
scenes, as the full 18.75m depth range can be used. This is of interest for map-
ping and robotic navigation, where seeing further allows better planning. As
the method is generic, future work includes applying it to other multi-frequency
problems such as Doppler radar [1] and fringing [5, 6].
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