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Executive Summary

This deliverable describes the navigation concept for the CENTAURO system.

The core representation in the navigation concept is the spatial representation. It holds the
knowledge that the system has about the world. We proposes a layered spatial representation
consisting of the following three layers.

• The global map serves as the frame of reference for the system. It is a graphical model
which is not necessarily globally consistent at a quantitative level but is consistent topo-
logically and can therefore support global mission planning. It allows the operator to
orient himself globally using image key frames or similar but it does not provide the
means for a full 3D reconstruction of the world.

• The local navigation map represents the world in 3D or 2.5D if deemed enough. It
gives the operator a 3D view of the environment and supports terrain classification and
navigation planning. These local maps are anchored into the global map and can be
used to derive a representation for the nodes in the global graph structure to support for
example place recognition.

• The local manipulation map covers the space near the robot and is only created on
demand. It has high enough resolution to support manipulation operation (planning, sim-
ulation, execution, etc).

The navigation concept also includes a novel navigation execution system. The unique feature
is this is that it exploits the dual locomotion mode setup of the robot and allows both driving
and walking.
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1 Introduction
This deliverable reports on the conceptual design for the navigation in the CENTAURO project
as specified in Grant Agreement [44]. This deliverable and the corresponding deliverables in
the other work packages constitute the specification for how to design the system and its com-
ponents. They will not be able to provide answers to everything since CENTAURO is a re-
search project. However, these deliverables should ensure that the pieces will come together as
smoothly as possible to form a working system. This requires, for example, that interfaces be-
tween the work packages / components can be identified and agreed upon. Assumptions made
about the performance of certain parts of the system made in other parts of the system must be
matched. Given the early stage in the project it is unlikely that everything stated in these deliv-
erables will be accurate and that all assumptions will hold, but without making any decisions
and assumptions no real progress on a project level can be made.

The objective of this particular deliverable is to ”Report on the concept for hybrid wheeled-
legged navigation of the CENTAURO robot in rough terrain.”. It belongs to work package 5
Navigation (WP5). Contributions to this deliverable and the work to come, come primarily from
KTH, LIU, UBO and IIT.

The overarching goal of the navigation work package (WP5) is to develop methods to sup-
port the operator when navigating in rough terrain. The developed methods should support and
exploit the fact that the CENTAURO platform has both wheels and legs. That is, both driving
and walking modes of locomotion are supported. Driving on wheels caters for speed when the
ground is even and walking allows the CENTAURO robot to traverse rough terrain. As a start
the operator would determine which mode to move the robot in manually, but later in the project
the CENTAURO system should be able to handle more and more of the switching. The system
should also adapt it posture to, for example, provide the largest possible stability when needed
or reduce the overall width to pass through a arrow opening.

To support such rough terrain navigation in the context of a search and rescue mission, the
CENTAURO system should construct a model of the environment as the robot moves. The
mapping system must be able to map a large environment which has been completely or partly
affected by a disaster like an earthquake. To assist the operator and perform some of the low-
level tasks associated with navigation autonomously, the system must be able to assess the
terrain for navigability. The methods for mapping and terrain classification must be efficient
enough to support real-time execution. To reduce the cognitive load from the operator the
system should also, ideally, learn models for terrain classification by fusing raw sensor data and
operator input. This way, novel operating conditions can be dealt with and the system would be
able to reduce the need for supervision as the mission progresses.

There are three important aspects to consider in these deliverables.

1. What information / inputs do we make use of and what do we require from these inputs.
This gives constraints on other parts of the system, including sensors.

2. What outputs and actions are we expected to produce. These should be designed to fulfill
requirements from other parts of the system and the system as a whole.

3. What methods and representations are used ”under the hood” to support the outputs and
actions.

From a development perspective the two first items are needed to make sure that the pieces fit
together and that the functional requirements on the system are met. The last one is important
to consider to determine how to achieve this and to make sure that the assumptions are more
firmly grounded.
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1.1 Inputs
The inputs needed are listed in the table below. A more detailed description of this is provided
in Section 4. In addition to what is below we require the specification for the work packages
that this work OBpackage interacts with in order to design the interfaces.

What When From Whom Nature
Existing sensor data similar to CENTAURO data M6 UBO RGBD
Existing sensor data via Central World Model (CWM) M8 RWTH RGBD
Local (as in the partner) data for local test on demand all varies
Real data from CENTAURO sensor (not on final system) M12 IIT
Real data from CENTAURO sensor via CWM M14 RWTH
Real data from CENTAURO system M30 IIT
Real data from CENTAURO system via CWM M30 RWTH

Table 1: The inputs to the navigation workpackage.

1.2 Consumers
The users of the results are listed in the table below. Here we focus on consumers external to
this work package. A more detailed description of this is provided in Section 4.

What When To Whom Nature
WP4 Virtual Testbed M12 RTWH Local 3D models from CWM data
WP4 Virtual Testbed M15 RTWH Data structure for global map
WP4 Virtual Testbed M18 RTWH Global maps from simulated data
WP6 Manipulation M12 UBO Detailed local 3D model from local data
WP6 Manipulation M18 UBO Detailed local 3D model from CWM

Table 2: The external consumers of results from the navigation work package.

1 INTRODUCTION 6
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(a) (b)

Figure 1: (a) Rough terrain in DisasterCity, Texas, that is almost inaccessible by state-of-the-art
systems. (b) 3D map acquired by range sensing.

2 Related Work
Disaster scenarios create complex 3D environments, as shown in Fig. 1. Many methods for
motion planning in 3D are not applicable to platforms with multiple degrees of freedom due
to limits on computation and payload. Urban Search and Rescue (USAR) represents a partic-
ularly hard case as real-time acting is necessary. As a result, many systems deployed within
USAR scenarios and its testing arenas are either completely teleoperated or based on mapping
and navigation in 2D [24, 25, 39]. Given a 2D map of the environment, one common approach
is to plan the shortest trajectory in configuration space and to execute this trajectory via PD
control. However, in harsh environments the safest path rather than the shortest path may be
desired. Wirth et al. introduced an exploration strategy and path planner that utilizes occu-
pancy grid maps for combining the distance transform (computing for each grid location the
distance to the closest target) and the obstacle transform (computing for each grid location the
distance to the closest obstacle) when planning a path to several exploration targets at the same
time [64]. Consequently, the method selects the safest alternative consisting of target location
and path to reach the target. Preliminary extensions towards exploration in 3D were introduced
by Dornhege et al. [10].

When robots operate on rough terrain, it is important to consider the shape of the surround-
ing terrain and how the motion of the robot might influence this. Long-term motion planning
in 3D is on most mobile platforms still computationally too expensive and only possible at
low frequencies due to slow update rates of existing 3D mapping solutions. Therefore, several
researchers introduced solutions with short-term look ahead that execute specific robot behav-
iors with respect to the current situation of the robot. Okada et al. introduced an autonomous
controller for tracked vehicles that is based on continuous three-dimensional terrain scanning.
The system obtains 3D terrain information around the robot by LIDAR sensors. The 3D map
acquired around the robot serves as basis for a controller adjusting the position of sub-tracks on
the robot (also sometimes referred to as “flippers”) and thus enabling smooth navigation over
rough terrain [35]. Magid et al. introduced a system for keeping the robot maximally stable
at every step of its path while allowing the vehicle to loose balance in a controlled manner
for facilitating safe climbing over debris [27]. Sheh et al. developed a method for behavioral
cloning, a type of learning by imitation that produces control rules that clone the skills of an
expert human operator. The method has been used for optimizing an autonomous controller
that finally performed at a level comparable to that of a human expert when overcoming rough
terrain [50]. Dornhege et al. introduced the concept of behavior maps, which is a framework
to link certain robot behaviors on rough terrain such as climbing over stairs and obstacles, with
structures detected from 3D point clouds. Both mapping and map classification were executed
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(a) (b) (c)

Figure 2: Explorer robot of University of Bonn at DLR SpaceBot Cup 2013 [57]. (a) grasping
a water-filled cup; (b) omnidirectional terrain model from depth cameras; (c) 3D map of arena
created with laser-based SLAM.

in real-time [9].
Murphy first demonstrated the deployment of shape-shifting robots in the USAR environ-

ment [31]. Shape-shifting robots can change configuration to adapt to surroundings when nav-
igating through voids. Murphy showed in a case study at a collapsed house the need for robots
adjusting their shape in order to access differently shaped voids [31]. Most shape-shifting robots
that are designed nowadays are tracked and feature additionally four inclinable flippers mounted
at the corners of the vehicles. For example, the robot Quince, developed by Japanese univer-
sities, was finally deployed at the Fukushima Daiichi nuclear power plant in the aftermath of
the massive earthquake and tsunami that hit eastern Japan in 2011. The robot was used for in-
spection missions in highly contaminated areas [32]. There were several mechanisms of hybrid
legged-wheeled platforms presented in the past [19, 59, 17]. For example, Takahashi et al. pre-
sented a mechanism for simultaneously executing wheel-mode and leg-mode [59], and Halme
et al. introduce rolking (rolling-walking) to facilitate combined legged and wheeled locomotion
for gaining effective natural terrain mobility [17]. While these mechanisms performed well un-
der the mode of teleoperation, no integration with methods for situation awareness and motion
planning were presented.

Algorithms for planning foothold selection and footsteps have been introduced in [3, 2].
They describe a system for real-time building of a local elevation map from 2D range measure-
ments that supports a foothold selection algorithm employing unsupervised learning. In [2] a
polynomial-based approximation method for creating decision surfaces is shown. The authors
show that planned footholds enable the robot to walk more stably, avoiding slippages and fall-
downs. A geometric feature-based footholds identification system is described in [66], where
candidate location for footholds are identified by support vector machine (SVM). In recent
work, UBO developed hybrid driving-stepping locomotion for their mobile manipulation robot
Momaro [47]. This robot was used with great success in the DARPA Robotics Challenge [45].

The techniques for Simultaneous Localization and Mapping (SLAM) are becoming quite
mature and the problem of mapping simpler environments can be considered solved. Fig. 2
shows an example. In the last half decade there has been a lot of work on 3D mapping, using
actuated laser scanners [33, 4, 11, 57] and cameras [38, 41, 5]. The recent development of
affordable RGB-D sensors have created an even bigger effort in the direction of 3D mapping.
Graphical models [13, 8, 21] and non-linear optimization [26] are now often used for mapping
rather than traditional filtering techniques. One of the first methods making use of the new RGB-
D sensor with great impact was the KinectFusion algorithm [20] which makes use of a limited
TSDF (truncated signed distance field) volume for representing and fusing the information.
Work such as Kintinuous [63] continue this development and extend it to larger volumes. Many
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recent methods also combine the geometric information with photometric information in the
pose optimization [22]. In [62] the ICP algorithm from KinectFusion is combined with the
approach of Steinbrücker et. al [55]. When working with dense 3D models the amount of data
that needs to be stored becomes a problem when the models get bigger. Approaches to deal with
this include multiresolution surfel maps [56] and discretization in the form of oct-trees [65] and
the use of elevation maps [23, 40]. When robots move beyond simple navigation tasks geometry
is not enough. In [34, 60, 58, 29, 37] the 3D model is extended with semantic information such
as what parts of the model correspond to walls, floor, chairs, etc. In [16] RGB-D data is used
to build large scale 3D maps augmented with recognized objects. The recognition is based on
clustered planar regions and the objects are refined by replacing them with their corresponding
CAD models. Recently, deep learning methods have been applied with great success for RGB-D
object recognition [48].

Figure 3: Left: Momaro climbing stairs in simulation. The green and purple boxes indicate
detected obstacles which constrain the wheel motion.
Right: Momaro stepping over a wooden bar obstacle.
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3 Progress in CENTAURO beyond the State-of-the-Art
In the CENTAURO project, we will make use of a hybrid mapping scheme where a dense 3D
world model will be estimated on a local scale to support the online perception for mobility
(terrain classification, assessment of traversability, etc) and a sparse graphical model will be
used at a larger scale to ensure global consistency and for storing the explored part of the
environment. On the local scale, our emphasis and contributions, will be on fast and efficient
methods to register sensor data using a combination of geometric and appearance information
allowing real-time mapping. On the larger scale, we will investigate how to use the dense local
maps to generate powerful descriptors, including high level semantic information, to be used for
robust data association in the graphical model. The starting point will be work like FabMap [7]
and its follow ups and extensions [6, 36]. On both local and global scale, we will make use
of an active perception strategy to allow the system to autonomously direct sensors to regions
where more information is needed to improve the performance of the mobility system and to
close loops [54, 14, 28].

We also contribute methods for semi-supervised learning of models for terrain classification
where we will bring together the work on semantic mapping and more traditional terrain clas-
sification. For this we will extend our previous work on semantic mapping [42, 43] and spatial
reasoning [53, 52, 1] and build on existing work [16] to match point cloud clusters to models
of objects and structures such as beams and pipes to include in the map building on work such
as [46, 51, 18, 12]. Probabilistic graphical models will be used to fuse the information from
the low level terrain properties and the higher level semantic information. The semantic in-
formation will also help relieve some of the cognitive load from the operator. Finally, we will
investigate how to incorporate information from CAD models of the environment (if available),
as a prior for the mapping process, knowing that large parts of it may have undergone drastic
changes.

The CENTAURO project will also advance the state of the art in autonomous and semi-
autonomous navigation planning in rough terrain. In wheeled locomotion mode, the CEN-
TAURO robot will be able to drive omni-directionally on flat surfaces. For legged locomotion,
the system will execute body motions of maximal stability while moving into a target direction.
The CENTAURO system will combine active perception of structures that can be utilized for
stabilizing the posture of the platform such as footholds and supporting planes, with a physics
simulation-based prediction of the outcomes of certain body motion commands.

Within the CENTAURO project, a new type of behavior system will be developed that,
similar to the concept of affordances [15, 30], identifies stable body motion trajectories that are
executable in the environment within a short time horizon. The system will be able to rank the
terrain in terms of navigability and suggest paths for the operator to select from.

Special walking gaits will be developed for steps and stairs as well as behaviors for stabiliz-
ing the platform with detected structure elements such as foot holds. The CENTAURO system
will allow autonomous navigation by planning obstacle-free paths in both wheeled and legged
locomotion modes. It will maintain its body pose and adapt to the perceived height differences
and slopes of the terrain.

3 PROGRESS IN CENTAURO BEYOND THE STATE-OF-THE-ART 10
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4 Navigation Concept
This section describes the navigation concept for the CENTAURO system. Locomotion is based
on omnidirectional driving and making steps when necessary. Initial experiences made with the
mobile manipulation robot Momaro, shown in Fig. 4, were taken into account.

4.1 Requirements and Assumptions for Internal and External Consumers
We will start by analyzing the internal and external requirements posed on the navigation work
package and discuss assumptions where applicable. The primarily external consumers of the
results produced in the navigation work package are shown in Table 2. In addition to this there
are internal requirements to realize autonomous execution of navigation in rough terrain making
optimal use of wheeled and legged locomotion.

In the following sections the different consumers will be discussed and the requirements
placed on the work in WP5 will be listed. These requirements will be of different types and at
different levels. Especially for the internal requirements the hierarchical nature of the require-
ments will be clear.

4.1.1 WP5: Autonomous Execution of Navigation

The main functional output from the navigation work package is support for the operator to
execute motions from A to B in an efficient way. Search and rescue missions are time critical.
Therefore, when designing the representations and algorithms the resolution, accuracy, etc of
these should be kept sufficient to solve the task, but not more.

We assume that the map does not have to be metrically consistent at a global level and
that loop closure at the global level only needs to result in topological adjustments to the map.
We will re-localize using denser information such as panoramic sensor data acquired at the
corresponding node. We also need to be able to start a mission with an already existing map
and register new map information to the existing map.
The requirements are that we can

• assess the terrain to tell where the robot can move with each locomotion mode,

• assist the execution of the motion from A to B, and

• start a mission with a map from a prior mission.

(a) (b) (c)

Figure 4: Mobile manipulation robot Momaro of University of Bonn [47]: (a) stepping over a
bar; (b) climbing out of a car; (c) traversing debris.
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4.1.2 WP3: Operator Interfaces

We make the assumptions that it is enough to be able to visualize the nearby surroundings of
the robot in detail and with geometric information and that it is enough that the operator can get
2D projections of what the environment looks like. This way an operator can plan missions on
a global scale by indicating the direction to move in there and give more precise commands at a
local level. One way to think of this is that at a local level there should be geometry and texture
but further away a textured ”view sphere” is enough.

When the robot is started in a new environment there will be no 3D at all as the robot has
not acquired any information yet. The only available information for the operator is very local
3D information (sensor range) and long range 2D information (images). It will be necessary at
this time to use a combination of 2D and 3D information in the operator interface. The local
area will become larger and more complete with time. We then propose that we make use of
this scheme throughout the mission to save bandwidth and computations.

Even though the information from WP5 will pass through the WP4’s Virtual Testbed to
WP3, the ultimate driver of the requirements below are WP3. To fulfill indirect requirements
from WP3, WP5 has to support

• rendering accurate views of the environment from different view points at a local level

• rendering views that support commands about the direction to move at a global level

4.1.3 WP4: Modeling and Simulation

WP4 maintains a model of the world and provides a Virtual Testbed. WP4 acts as the central
hub for information exchange in the system. Sensor data flows via it to the navigation system
for example. The spatial part of the world model is based on both prior information and the map
built by the robot from sensor data. The model supports simulations. These simulations can be
used both to replace real hardware and to evaluate different plans before they are executed on
the real robot. WP4 needs to be able to update the underlying model based on information
from WP5. Our assumption is that for modeling real-world missions it is sufficient that the
simulator only covers the local region around the robot in 3D and that the world further away is
represented without geometry. The size of the local region and where the further away region
starts will be task dependent. This assumption coincides with the assumption for the operator
interface. To support WP4, WP5 needs to

• maintain a world model that supports (physics) simulation at the local scale

• maintain a representation at the global level which supports orienting oneself into the
world

4.1.4 WP6: Manipulation

In the manipulation work package it is important to have accurate 3D models of the local envi-
ronment to recognize objects and structures, to assess potential grasps, etc. In addition to this
the following must be fulfilled.

• The model of space must be able to incorporate information from multiple sensors and
types of sensors over time to improve perception of objects

4 NAVIGATION CONCEPT 12
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• The robot base must be placed at appropriate locations in order to be able to perform
object pick and place tasks1.

4.2 Spatial Representation
The core of the navigation concept is a representation of the environment that supports the needs
from inside the navigation work package, i.e., robust mobility and localization, and from the
outside in the form of visualization, simulation and manipulation. The size of the environment
under consideration and the requirements on the level of details posed by manipulation prohibits
a single metric 3D map with uniform resolution. We will therefore consider the design of the
spatial representation in terms of three layers

• Global map which covers the size of the environment

• Semi-local map supporting navigation planning and execution

• Local map supporting manipulation

4.2.1 Design

1. At the largest scale there is a global graphical model which is globally consistent in the
sense that it supports navigation and decision making over the entire environment of in-
terest. However, we put no constraints on it being metrically globally consistent. We
assume that accurate geometric information is not needed for global mission planning but
edge traversal information is needed. The global map supports

• a global reference to which more local information can be registered

• place recognition so that the robot is able to re-localize to previously visited places
in the environment.

• support global mission planning

• the global map will be updated much slower than the local map. It will update as
new information is available which is typically at the transitions between local maps.

• the resolution of the global map will be about the size of the local maps.

2. At the second level in the spatial representation there is a semi-local 3D navigation map
which is a sliding window supported by raw data saved for a short time. The scope of
this map is large enough to support local / detailed navigation planning. When a new
topological node is added to the global map, the sliding window data is used to generate a
representation of the node. For efficiency reason, a representation in two 2.5-dimensional
maps (elevation of ground and ceiling) might be considered.

The semi-local navigation map

• provides the operator station with the 3D model used to render a view of the robot’s
surrounding

• supports terrain classification

1This can be addressed by including robot base motions in inverse kinematics and resolving redundancies
according to prioritized control goals [49]. The assessment of potential robot base poses can be accelerated by
precomputing an inverse reachability map [61].
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3. The third level is a highly detailed 3D model catering to the needs of manipulation. Its
extent is roughly defined by the workspace given by the reach of the robot’s arms. The raw
data from the second level’s sliding window can be reprocessed with different parameters
to get the manipulation map. Please refer to Deliverable D6.1 for more details. The
manipulation map

• is created on demand, i.e., when we want to perform manipulation operations

• makes use of active sensing to acquire the views needed to build the model

• The resolution/accuracy of the model will vary from millimeters to centimeters de-
pendign on the needs and the sensing limits.

4.2.2 Terrain Map

The local map at the second level is used to generate a terrain map which in turn is used by
the path planning (where to go but not how exactly) and the switching of locomotion mode.
Information about navigability is maintained in a representation where each x,y position (cell)
contains information about the traversability (”height constraints”, ”walk here”, ”stair steps”,
”need to step over”, etc).

The terrain map must contain sufficient information to support full body navigation planning
by being able to support

• assessment of the foot holds and

• assessment of if these foot holds can be connected by driving or if it is possible to make
a step from one foot hold to the next.

1. On the scale of individual wheels (or wheel pairs), nodes correspond to possible foot
placement locations, with costs indicating accessibility and’ ’ stability of foot holds,
which are derived from geometric features, such as horizontal support surfaces, and sur-
face material properties. Edges connect foot holds which can be directly reached by
driving or by making a step, with costs indicating the effort of moving the foot from one
node to the other.

2. On the scale of the entire robot base, nodes correspond to robot base poses and costs
indicate the stability of the pose and the avoidance of obstacles. Each base node will
correspond to four foot nodes (for the four robot legs) that are reachable from the base
pose. Edges connect base nodes which can be reached by a combination of driving of the
wheels and possible steps of a single foot, as indicated by the edges in the foot graph and
verified using kinematic and balance constraints for the entire robot.

4.3 Navigation Execution
One of the main advantages that the CENTAURO platform offers, is that it supports both driving
and walking. Driving allows the robot to move fast and efficiently when the ground allows it.
When the terrain gets rougher it can use its legs to walk. Walking is slower and requires more
power but in return much rougher terrain can be handled.

The operator is taking an active role in the operation of the robot at all times but the nav-
igation system should relieve him from some of the cognitive load by helping with some of
the low-level navigation capabilities. Depending on the properties of the terrain this results in

4 NAVIGATION CONCEPT 14
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different levels of support. On completely flat terrain the operator will be able to command the
robot to move to a location. As the terrain gets rougher and driving is no longer possible the
robot has to start walking. If the terrain contains only a few small and isolated obstacles, the
long term aim is that the operator should be able to control the motion of the robot by speci-
fying, for example, direction and speed. The system should then be able to plan where to put
the feet down. As the terrain gets even tougher the operator will have to take control at a lower
and lower level and the CENTAURO system will at this point assist with decision support func-
tionality. The system should be able to recognize its limits and ask for help from the human
operator, e.g. because terrain data is not available or because no feasible plan can be found.

It is the operator that decides what mode of locomotion to use with the help of suggestions
from the system. The operator would also be the one that decides what foot print the robot
should use, based on suggests from the system.

4.4 Sensing Requirements
We need to be able to perform accurate dead-reckoning while moving in rough terrain. This
will require input from joint and wheel encoders, IMU(s) and exterioceptive sensors such as
cameras to perform visual odometry. It is important that the sensors can operate both indoor
and outdoor in the same mission and that different lighting conditions can be dealt with.

• IMU(s) for high bandwidth estimation of the relative body motion

• encoders on wheels for odometry

• encoders on joints to determine configuration and legged odometry

• joint torque sensors and if needed force-torque sensors on the hands and legs.

• omni-directional vision to support orientation invariant place recognition

• lidar sensor(s) for robust 3D perception2

• RGB camera(s) for terrain classification

• camera in the hand for mapping for manipulation and object perception

2such as the VLP-16 from Velodyne

4 NAVIGATION CONCEPT 15



CENTAURO – 644839 D5.1 Navigation Concept

5 Implementation Plan
This section provides a plan for the implementation of the concept. We present this in the form
of the involved tasks. At a high level we foresee that the work on Task 5.1 and 5.2 will be
highly integrated between KTH and LIU. KTH will focus mainly on the terrain classification to
start with and the global map whereas LIU will focus on the local metric maps. IIT and UBO
will work on the full body navigation capabilities which will result in functionality to support
walking and driving with a relatively high level command interface which can then be used
when executing the navigation and performing the locomotion mode switching.

5.1 Rough Terrain SLAM (Task 5.1)
A high-quality, intuitive visualization of the CENTAURO robot surroundings supports the op-
erator to better understand the disaster area. The variety of disaster scenarios and manipulation
tasks that the system will face suggest that it is best to follow a dynamic approach in the pro-
cess of creating spatial maps. As described in Sec. 4, three layers (or levels) of representation
will be investigated and proposed for the CENTAURO system to address the needs of different
methods.

The development of multi-level environment maps will follow a three step approach. In the
first step we will investigate the intermediate level of the spatial representation. The purpose
of this map is to help the operator to perform local motion planning. The intended level of
detail here could be realized with a visual SLAM algorithm executed on the CENTAURO robot.
The quality, in terms of density, of the visualization will depend on the sensors mounted to
the robots. It will be generated according to the motion of the robot in a “sliding window”
procedure. The range of the area that will be captured has still to be discussed, since it will
depend on different factors related to the mission. However, the evaluation process will give
feedback for further decisions and iterative improvements.

For efficiency reasons, in the second step a 2.5-dimensional occupancy (or height) map
representation will be considered for the intermediate level. It will consist of an elevation map
of the scene, estimated from the computation of the height from the ceiling and from the ground.

Alongside, the development of the third level will be performed in the second step. A highly
detailed map that will mostly be used for manipulation tasks in work package 6 [44]. However,
it can also be used to navigate in dangerous areas in a more detailed scenario. The intended idea
is to have a dense structure from motion pipeline at very low range. This will be evaluated in
combination with other functionalities and we may deviate from this idea in case of bandwidth
problems.

In a third step we will implement a global model of the disaster environment. This map
will be created from the starting position of the CENTAURO robot and it will define a global
reference frame for mission planning. In contrast to the previous maps, the level of detail is
very low, but it will contain information on all areas already explored. For efficiency, key-
frames with the CENTAURO robot poses as well as panoramic views will be kept to allow back
tracking of the robot steps along the path. The implementation plan for the spatial representation
is summarized in Table 3.

For all three steps we will have feedback on the performance of these maps with the other
functionalities (Navigation, Manipulation, Terrain classification, ... ). This is intended to guide
further iterations on the map development.
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5.2 Terrain Classification (Task 5.2)
We will develop the terrain classification to support autonomous execution of navigation and
to provide semantic information for visualization to the operator. We will mainly focus on the
navigation execution as the evaluation task. We will proceed with the development in steps.

1. In the first step we will make use of geometric information to classify the terrain. We
envision three classes at this stage.

(a) Drivable

(b) Walkable

(c) Non-navigable

We start by operating on single sensor frames and use a point cloud as input format. Later
we input the local 3D map from the spatial representation as it becomes available.

2. In the second step we will incorporate color and texture information, to refine the classi-
fication. At this stage we foresee the following decision mechanism:

Classes Distinguishing features
Walkable and drivable Flatness (geometric constraint)
Drivable and non-navigable Material (e.g. mud vs tarmac)
Walkable and non-navigable Stability (color, texture and geometry)

We will evaluate a deep learning approach to the classification problem.

3. In the third step we will release assumptions about independent cells and incorporate
spatial correlations using, for example, CRFs.

4. Later on we imagine working on some of the following issues

• Incorporate object recognition / classification into the map. This extends the work
in the second step by incorporating more high level information.

• Supervised learning where an operator can provide input to the classification. The
vision is that the operator can help with labeling when new categories / classes are
encountered or the conditions have changed significantly so that the classification
no longer works.

• The are several strands of active sensing i) change sensor view to refine models, ii)
use your feet to test the ground support, iii) carefully drive though stuff that might
move away.

Table 3: Implementation plan for the spatial representation maps.

Step Brief Description

Step 1 Intermediate level 3D map (navigation)
Step 2 Two tasks : third level highly detailed 3D map (manipulation) and interme-

diate level 2.5D map (navigation)
Step 3 First level 3D global map (mission planning)
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(a) (b) (c)

Figure 5: Mobile manipulation robot Momaro of University of Bonn [47]: (a) Climbing stairs in
simulation. The green and purple boxes indicate detected obstacles which constrain the wheel
motion. (b) 2D height map of Momaro standing on the first of two steps. The robot is in stable
configuration to lift the right front leg. Red rectangles: Wheel positions, red circle: COM, blue:
robot base, green: support polygon. (c) The right front leg is lifted and placed on the next step.

5.3 Full-body Navigation Planning (Task 5.3)
We will develop in this task a motion planner for the robot base supporting driving as well as
stepping locomotion modes, based on the initial experiences made with the mobile manipulation
robot Momaro, shown in Fig. 5.

Input to the navigation planner will be a current robot pose (estimated by localization with
respect to the created 3D environment map), the navigation goal (specified as desired robot pose
in the map frame), and a navigation graph representation derived from the terrain map on two
scales as described in Section 4.2.2.

Initially, we will realize omnidirectional driving on flat or sufficiently even surfaces, where
no steps are required. Robot base poses will be planned in 3D (x, y, θ), for given height (z) and
zero (upright) pitch and roll angles. The above navigation graph will be created from the terrain
map and a cost-optimal sequence of nodes will be determined by A* search.

In a second step, we will extend the navigation planner by allowing stepping for individual
feet while the robot is statically stable on three legs. For this, we will realize stepping primitives,
which move the center of mass projection of the robot into the remaining support triangle,
execute the step with the unloaded leg, and shift the weight back to the center of the four-foot
support polygon.

In the third step, we will extend the planner by considering also the base height z and
the angle φ between the vertical robot axis and the largest local terrain slope as parameters
of the base pose that are considered for navigation planning. For the shift of the center of
mass projection, we will include upper body and arm motions. In this way, we will extend the
applicability of the navigation planning to sloped terrains, for which the base might need to be
shifted to maintain balance.

If the planner has insufficient terrain information to find a robot trajectory to the navigation
goal, boundary cells of the known map area will be indicated and paths to them can be planned
in order to obtain more measurements of the unknown terrain from these views. An exploration
heuristics will be devised that suggests a next best view pose with low navigation costs from
the current pose and a low heuristic cost towards the navigation goal.

In order to incorporate the most recent sensory information about the terrain map, the esti-
mated robot pose, and perceived obstacles, the navigation planner will regularly plan obstacle-
free paths in both wheeled and legged locomotion modes while the robot is navigating.

We will realize autonomous and semi-autonomous operation modes through operator inter-
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faces developed in T3.3, T3.4, and T3.5. In semi-autonomous operation, qualitatively different
navigation plans will be presented for the operators to select among, similar to suggestions
issued to car drivers by driver-assistance systems in modern cars. Planned paths can also be
shown to the operator in direct control mode, if the navigation goal is known to the planner.

5.4 Autonomous Execution of Navigation (Task 5.4)
We will proceed in steps in the development of the execution of navigation.

1. We will start by treating the system as a wheeled robot and ensure that we can provide
mobility in flat terrain. We will use the terrain classification and navigation map informa-
tion to support planning of drivable paths and will execute these.

2. As a second step we will introduce the ability to switch between walking and driving
where walking is controlled by the operator at a low level. This ensures that we have
a system early on with the full complete mobility capabilities, although putting a lot of
strain on the operator during walking.

3. Using the system developed in the second step as a benchmark, we will investigate how
to best improve performance (as defined by WP8) of the system in terms of mobility by
better support to the operator along the lines defined in Section 4.3.
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6 Conclusions
We have presented a navigation concept. At the center of this is a spatial representation with
three layers, global map, local navigation map and a local manipulation map. The latter is only
created on demand.

We also presented a concept for using the spatial model to plan and execute navigation
actions. The system will provide low-level support to the operator to perform navigation. The
aim is that navigation is carried out in a way that is offers the best trade off between performance
of the system and strain on the operator.
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