
The EU Framework Programme for Research and Innovation H2020
Research and Innovation Action

Deliverable D4.3
Constructing simulated world from robot percepts

Dissemination Level: Public

Project acronym: CENTAURO

Project full title: Robust Mobility and Dexterous Manipulation in Disaster Response
by Fullbody Telepresence in a Centaur-like Robot

Grant agreement no.: 644839

Lead beneficiary: RWTH – Rheinisch-Westfaelische Technische Hochschule Aachen

MMI - Institute for Man-Machine Interaction

Authors: Torben Cichon

Work package: WP4 – Modeling and Simulation

Date of preparation: 2017-10-26

Type: Report

Version number: 1.2

Ref. Ares(2018)2401948 - 06/05/2018



CENTAURO – 644839 D4.2 Simulation

Document History

Version Date Author Description

1.0 2017-09-03 Torben Cichon Initial version
1.1 2017-09-19 Torben Cichon Minor updates
1.2 2017-10-26 Torben Cichon Post integration

2



CENTAURO – 644839 D4.2 Simulation

Executive Summary

In D4.3 we present the developments towards the predictive robotic system. Modeling a digital
twin of the real system for direct control or visualization purposes is accompanied by static or
dynamic environments to interact with. The digital twin represents the same integrated function-
alities (especially with respect to the XBotCore developments in WP2) and the same interfaces,
especially in terms of ROS, as the real robot. Additional sensor data processing, rendering and
visualization is also part of this work package. These can then be used to dynamically generate
environments based on the robot’s percepts.

3



CENTAURO – 644839 D4.2 Simulation

Contents

1 Introduction 5

2 Overview 6

3 Interfaces 8

4 Simulatable Robot Model 10

5 Visualization and Rendering 17

6 Simulatable Environment Model 23

7 Overall Setup 30

8 Conclusions 32

9 Appendix 32

4



CENTAURO – 644839 D4.2 Simulation

1 Introduction
The 3D simulation system is the basis for the predictive robot model and the interaction of the
operator with the look-ahead simulation (see Grant Agreement [1]):

On the operator’s end, the physical simulation of the robot in its environment (de-
veloped in T4.2) must be updated from the percepts and actions of the robot. With
the help of semantic information about the robot’s surroundings such as, e.g., type
of terrain, graspable objects, or accessible paths, the CENTAURO robot creates a
complete representation of every environmental detail available to it. The result is
stored in the CWM (see T4.1) and must be processed fully automatically for later
use in the predictive robot model.

But all this can only happen dynamically: Objects in the real world move, terrain
changes, walls may collapse. Even when the robot does not move and its vicin-
ity stays constant for a while, assessments about, e.g., objects in the environment,
stability of paths or possible decisions may change. Hence, the model of the en-
vironment inside the simulation system has to support creation, modification and
deletion of entities not only in the CWM, but also in the rigid body dynamic simu-
lation and in the rendering subsystem.

Eventually, real-time sensor simulation is needed to predict the robot behavior dur-
ing changes in the environment model. In the discussed example of a collapsing
wall, e.g., a laser scanner simulation would predict what the robot perceives and
show it to the operator, even during loss of the communication link. For this, ex-
isting methods of sensor simulation from the software package VEROSIM must be
adapted to the highly dynamic simulation of the environment.

Since all information about the environment will be stored inside the CWM (see
T4.1), changes in the environment and in the outputs from algorithms will be re-
flected here. Visualization algorithms can thus easily track and highlight changes
and notify the operator (for example about the collapsing wall). This is closely
related to T3.5.

The core components of work package WP4, also with respect to WP8 (Requirement Specifi-
cation and Evaluation), are:

1. Integration and Interfaces,

2. Simulatable Robot Model, and

3. Simulatable Environment Model.

Thus, D4.3 is not only limited to prediction but moreover the use and connectivity of all modules
and the simulator. The interface of the simulation model to real hardware components and
external input or output devices is of paramount importance.

1 INTRODUCTION 5



CENTAURO – 644839 D4.2 Simulation

2 Overview
The deliverable D4.3 (Constructing simulated world from robot percepts) encompasses:

1. Interfaces,

2. Simulatable Robot Model,

3. Visualization and Rendering,

4. Simulatable Environment Model.

These central compartments can be found in the following sections. As an overview, we
want to point towards the desired final functionalities of the overall project and the CENTAURO
robotic system, focusing on their consequences for the WP4 simulator.

Direct
Control

C
W
M
’

C
W

M

Visu
Mode

C
W
M
’

C
W

M

Prediction
Mode

C
W
M
’

C
W

M

C
W
M
’

C
W

M

C
W
M
’

Figure 1: Centauro Modes.

The different operational modes are, as we also see in Fig. 1:

1. direct control of the real system

2. direct control of the digital twin in a static predefined environment

3. direct control of the digital twin in a dynamic perceived environment + visualization of
this in the virtual world

4. switch between direct control of real or digital system in a dynamic perceived environ-
ment

2 OVERVIEW 6



CENTAURO – 644839 D4.2 Simulation

Thus, the digital twin has to represent all necessary aspects of the real system, especially pro-
viding the same interfaces to all project partners. Thus, the digital twin has to be developed
in close cooperation to the robot’ hardware partner IIT and also all other ”interface” partners.
This encompasses robot commands and feedback, robot state, sensor data, etc. distributed into
the different work packages. In general we discovered the following interfaces with the robotic
system (by work packages):

• Navigation (NAV)

• Manipulation (MAN)

• Terrain Classification and Object/Workspace Perception (TC & OWP)

• Exoskeletal control (EXO)

Consequently, we present the main interfaces in Sec. 3 first before we describe the robot model
in sec 4. The visualization of live robot’ data, the stereoscopic rendering in general, and the
setup of natural human operator interfaces are shown in Sec. 5. Finally, the different mis-
sions/scenarios — static or dynamically generated during the mission — are then presented in
Sec. 6. Everything then comes together in an overall holistic system of operator(s), robot, dig-
ital twin, and data processing systems in Sec. 7, before we conclude our work and research in
Sec. 8.

2 OVERVIEW 7



CENTAURO – 644839 D4.2 Simulation

3 Interfaces
Based on the work of previous work packages (D4.1 and D4.2) we enlarged the scope towards
the changed requirements of the robotic system. Due to the central so-called XBotCore frame-
work which is used on the real robot connected to the real-time capable core, we want to mimic
this as good as possible. Thus, the integration of XBotCore into the VEROSIM simulator, as
well as extensions to the general ROS interface are the main foci of implementation. As pre-
sented in Sec. 2 the main interfaces are the Robot, MAN, NAV, EXO, TC&OWP, which partly
depend on XBotCore, or on ROS. The general interface standards are presented in the follow-
ing, whereas specific interface details are described in the modeling section (Sec.4), where they
are applied to the different robotic systems.

3.1 ROS Interface
The overall structure of the ROS interface of the simulator is still the same. We used the modular
implementation scheme motivated in D4.1 and D4.2, and extended the functionalities towards
the needs of all project partners. This led to the following functionalities:

• std msgs/*
Float64, Bool, Int, ...

• sensor msgs/*
JointState, Image, CompressedImage, PointCloud2, ...

• tf2 msgs/*
tfMessage

• rosgraph msgs/*
Clock

• nav msgs/*
Path

• centauro msgs/*
HeightMap, ModelPose, DrivingMovement, LegMovement, TexturedPolyhedronMesh

• xcm/*
ADVRJointState, ADVRJointCommand

Depending on the use case, publisher and/or subscriber of these message types have been im-
plemented, with respect to the CENTAURO mode (see also Fig. 1). For the ’Visu Mode’ the
simulator has to subscribe to everything the robot publishes, whereas the ’Direct Control’ (of
the virtual robot) one has to produce and publish all sensor data in the simulator and publish
these to the processing nodes in the system. Thus, each mode has other requirements for the
type and number of ROS nodes used.

3.2 XBotCore Interface
The XBotCore architecture has already been presented in previous deliverables, mainly D2.1
and D2.2. In summary, XBotCore is used for the real time capable control of the final CEN-
TAURO robot and should be also used in the according simulator. The XBotCore platform can

3 INTERFACES 8



CENTAURO – 644839 D4.2 Simulation

be directly incorporated into C++ based code or can be extended via ”Plugins” to generate for
example ROS message in- and outputs, which is the main middleware used in this project. Thus,
in general the XBotCore interface with its plugins can be used to connect the different modules
(NAV, MAN, EXO, TC&OWP) to the real robot or the simulator using the exact same interface.
For the simulator this means an integration of XBotCore and an adoption of all other interfaces
needed (mainly in the ROS context) which are not directly covered by XBotCore.

3 INTERFACES 9



CENTAURO – 644839 D4.2 Simulation

4 Simulatable Robot Model
To mimic all necessary aspects of the real robotic system, we want to instantiate so-called
”digital twins” of the used robot. This means to not only import the robot model, but also
representing all necessary internal and external interfaces. Based on the robot these are of
course different. Due to the used robotic systems in the CENTAURO project, we instantiated
one Momaro robot and one Centauro robot, which their unique interfaces. In the following we
present those robot models and the according interfaces we implemented in the surrounding
simulator VEROSIM.

4.1 Different Robot Models
For each robot we can define two different robot models:

1. digital twin model

2. visualization model

The ”digital twin” is a copy of the real system. This means we use the same input devices to
control the robot which is based on the same URDF model and incorporates the same real-time
capable core software. Additionally, this model has the same setup of sensors which publish
the same sensory output on the same ROS topics as the real robot. Of course, the sensor data
gathered in simulation can deviate from the sensor data of the real robot.

The ”visualization model” is a pure subscriber model. The robot’s joint state is visualized,
the real sensor data is visualized and everything else the real robot publishes is collected in the
simulator. Thus, we have a visualization of the environment, the robot’s state, and the sensory
output (in- and excluding all processing steps). The gathered sensor environment data can then
be used later for the dynamic environment generation.

As one can see in Fig. 2 the general setup of our robotic systems (no matter if we use
Momaro or CENTAURO system) can be divided in the robot’s base (base + upper body + legs
+ arms), the two (different) hands, and the sensor head.

XBotCore

ROS

Robot Base

Sensor Head

Hand L
Softhand

Hand R
Schunk Hand

Figure 2: Modular Robot Setup.

The general implementation scheme for an automated import of this (always changing) robotic
system is:

URDF (a)−→ model (b)−→ digital twin

4 SIMULATABLE ROBOT MODEL 10



CENTAURO – 644839 D4.2 Simulation

where we (a) automatically import the URDF file and parse it to be compliant with the VEROSIM
data structure. And (b) additionally automatically add necessary internal and external interfaces
to the model, based on the robot description.

Mainly concerning the ’digital twin’ model this is presented for the two robots used in the
CENTAURO project in the following sections.

4.1.1 Different Control Devices

For a direct control of the virtual robot we implemented a set of control devices. Of course, the
final system has to interface the exoskeleton and/or navigation ROS messages, but for testing
and development some simpler control devices are feasible. As already presented in D4.2 we
established an UDP-based interface to the exoskeleton which can still be used to control for
example the upper body of a robot. Further developments regarding the exoskeleton now shifted
towards the incorporation of XBotCore and widening the ROS interface. Another possible
control device is the control software from UBO (UBO Robot Control) which is also used in
several Momaro applications. Due to its ROS-based core and a defined interface (shown in
D4.2) we were able to use this for a direct control of the Momaro system also in VEROSIM.
This also led to various possibilities of using ROS and scripts to custom interface with the
system. Besides these high level interaction schemes we also implemented a direct gamepad
control of the CENTAURO robot which is presented in Sec. 4.2.1.

4.1.2 Different Control Schemes

Our control scheme utilizes the two analog gamepad sticks mapping their position to desired
velocity of the robot. We have implemented several mappings. The operator may choose either
(a) to control the translation and rotation independently, or (b) move the robot in a car-like
mode, where the one gamepad stick is used to apply the steering angle, whilst the other stick
the translation velocity. In this second mode, the robot isn’t able to rotate instantly, but it
enables the operator to rely on his habits driving a car and so do less control errors. We also
implemented a third control mode, which we call caterpillar-mode (c). Here we map the two
gamepad sticks onto velocities of two virtual caterpillars left and right of the robot. This mode
enables the complete motion of the robot like the first mode and is a bit more intuitive (cf.
Fig. 3).

We implemented these modes in order to give the most flexibility for the operator to choose
the preferred mode. Apart from that, it is possible to evaluate the operator performance using
different motion modes in simulation and present the best one for real-life scenarios.

4.1.3 Momaro

The Momaro robot is a robot built by UBO. We are able to import the URDF file of the robot
and simulate its motions. Usually the robot motion is planned and executed by algorithms
implemented by UBO. Despite that, as an option for the operator, we have implemented several
control strategies for the robot using a gamepad, as presented before.

As Momaro is represented by an URDF model, we use the VEROSIM importer for reading
the URDF file and generate a VEROSIM model including the rigid bodies, joints and motors
for rigid body simulation. We have performed the necessary adaption for the corrected leg
geometries within the original URDF file, such that the import is completed automatically;
manual adaption steps are not necessary.

4 SIMULATABLE ROBOT MODEL 11



CENTAURO – 644839 D4.2 Simulation

a

(a) Decoupled Rot-Trans

a

(b) Car-like steering

a

(c) Caterpillar

Figure 3: Different control strategies (top view)

The Momaro robot is equipped with four wheels (one each leg) which are able to rotate in
the vertical axis. In order to continue the automated import, we have written an adaption script
that integrates the different control modes into the model.

Figure 4: Robot Momaro with complete hulls.

Like the Momaro robot, the CENTAURO robot will also have four wheels enabling equal
motion capabilities; therefore we can reuse the import and steering functionality with the CEN-
TAURO robot as well.

4 SIMULATABLE ROBOT MODEL 12



CENTAURO – 644839 D4.2 Simulation

4.1.4 Schunk Hand

As with the most components, there exists a URDF model of the Schunk Hand. This hand
will be mounted on the right arm of the Centauro robot. This human-like hand has five fingers
and 20 degrees of freedom. The nine motors included into the hand are able to move each
finger independently. However, several joint groups (usually a finger is a group) are connected
together to one motor enabling synchronized motion of these joints.

The mechanical connection of these joints is represented in the URDF file by a mimic-
entry, where the scale and offset of the joint motion is noted with respect to the reference joint.
We adopted our URDF importer for handling this kind of description. The resulting imported
VEROSIM model generates for each of the joints of the group a motor. These motors share a
common input and force synchronizes motion as required by the URDF model.

In addition we generate a ROS subscriber compatible with the descriptions coming with
the ROS package schunk svh driver. Using svh sin test, provided by this package, we have
validated the functionality of the imported VEROSIM model, which is now ready to be used as
a digital twin.

4.1.5 Schunk Hand and Exoskeleton

The communication with the exoskeleton is not final yet, but for now, the communication based
on UDP packets is available. In parallel to the ROS based interface, in VEROSIM we imple-
ment an UDP handler in order to provide a simulation of the Schunk Hand for usage with the
exoskeleton at this stage.

Figure 5: Schunk Hand imported from URDF description into VEROSIM.

4 SIMULATABLE ROBOT MODEL 13



CENTAURO – 644839 D4.2 Simulation

4.1.6 Centauro

The transfer from Momaro to Centauro is based on the consistencies (+) and differences (-) of
these two systems.

(+) ”same” sensor head setup

(+) externally accessible via ROS (using similar ROS messages)

(-) internally controlled by UBO Robot Control vs. IIT XBotCore

(-) different hands

Of course the import procedure is the same as before, we still use an URDF file to import the
model into VEROSIM, as we can see in Fig. 6

Figure 6: Centauro model.

The main systematical transition is done by using the XBotCore framework, which will be
discussed in detail in the next section.

4.2 XBotCore
XBotCore is a modular library developed by IIT with the focus on the communication via
EtherCat and controlling robots based on this communication bus. IIT has already demonstrated
the principle using Gazebo as simulation system. Doing this, many of the control algorithms
may be implemented and tested before the real robot is ready to use.

Using XBotCore as one integration tool we can abstract a lot of issues with this interface.
The overall holistic setup of integration is shown in Sec. 7 but for now we can already say that
most control and feedback data transmission will be piped through XBotCore, whereas sensor
data will be directly transmitted via ROS. Furthermore, XBotCore can then provide additional
ROS nodes for all non-real-time critical control and feedback tasks of the robot.

4 SIMULATABLE ROBOT MODEL 14



CENTAURO – 644839 D4.2 Simulation

4.2.1 ROS

Besides the ROS interface, to directly interact and control arbitrary robots in the simulator, pre-
sented in Sec. 3.1, we additionally implemented further ROS message types associated with
XBotCore, namely ADVRJointState and ADVRJointCommand. These can then directly be ad-
dressed by external tools without using the XBotCore interface. For the ease of use we also
implemented a direct interface for simple navigation tasks. Based on the NAV ROS msg cen-
tauro msgs/DrivingMovement, we implemented a Publisher of this message type which can
directly be connected to any input device used in the simulator. Thus, we can easily test and
access driving movements with a gamepad, joystick, or any other input device of choice.

For a direct visualization of the robot’s TF2/tf tree we can use the according ROS message
and automatically generate a tree of frames using blocks as we can see in Fig. 7. The published
frame tree of the robot is gathered with a tf subscriber and parsed into multiple hashes of the
frames. Afterwards, the frame tree is recursively parsed into the VEROSIM frame tree and for
visualization purposes each frame is represented by a box with non-uniform x/y/z lengths. This
was used as a proof of concept of using a direct control via XBotCore in a simulator, visualized
in a second simulator instance.

Figure 7: Automatically generated ’tf’ frame tree.

4.2.2 VEROSIM

The XBotCore library is modular structured and allows the user to add control extensions
or other functionality by the software pattern ’Dependency Injection’. In particular it allows
the user to drop in implementations for the interfaces of XBot::IXBotJoint, XBot::IXBotIMU,
XBot::IXBotFT. Doing this allows the user to replace the robot under control by a simulated
one.

After the CENTAURO Workshop, where we have got deep insight into the XBotCore struc-
ture, we were able to implement the needed interfaces using VEROSIM as simulation system.
Here we also provide the developers with a real-time simulation of the CENTAURO robot. In
addition, we establish a link between XBotCore and the other components used with Centauro.

In particular this means a one-to-one mapping of

• Joints,

• Links,

• Force Torque (FT) Sensors, and

• Inertial Measurement Units (IMUs),

4 SIMULATABLE ROBOT MODEL 15



CENTAURO – 644839 D4.2 Simulation

whereas especially the FT sensors and the IMUs are still under development.
For testing and evaluation of current developments we use the simulated CENTAURO robot

in the prediction mode. Represented by Fig. 8b we use for example the XBotCore plugins
(right) to directly control the robot (or its digital twin) on the left, while visualizing the current
robot’s state in another instance of VEROSIM (middle).

(a) The system in action: VEROSIM (with XBotCore) + VEROSIM Visualization + CommunicationHandler +
XBotGUI

Simulated Centauro Robot

Visu
Mode

C
W
M
’

C
W

M

Prediction
Mode

C
W
M
’

C
W

M

(b) Concept of using the simulator twice, as a digital twin and its use in visu or
prediction mode

Figure 8: Using the simulator: Centauro direct control + visualization of JointStates.

4 SIMULATABLE ROBOT MODEL 16



CENTAURO – 644839 D4.2 Simulation

5 Visualization and Rendering
In general, we already presented the rendering pipeline for example in D4.2. Also here in D4.3
we use ROS as the commonly accepted middleware to transmit generated and processed data.
As described in Sec. 3.1 we primarily use standard ROS sensor message types, accompanied by
custom message types for processed vision data.

For the visualization and rendering three main aspects are important:

• visualization of ”raw” data

• visualize preprocessed sensor data

– optimized for an immersive (stereoscopic) presence of the 1st person operator,

– enhance the operability by useful visualization metaphors, like Head-up-display or
Projective VR,

– combined to textured meshes

As we have already shown the visualization of raw data (in terms of images, point clouds, or
the robot’s state) in the EU review and follow up integration meetings (cf. Fig. 9 and Fig. 10
accordingly). Now, we want to focus here on continuous expansion of this concept.

Figure 9: Review Meeting Momaro live visu of PointCloud, Images, JointStates, Tracer.

Besides the sensor message raw data, we extended the capabilities of VEROSIM for visual-
izing more data types in a natural and easy to use way. Transmitted via ROS messages we are
now able to visualize different processed sensor data in the simulation system.

5 VISUALIZATION AND RENDERING 17



CENTAURO – 644839 D4.2 Simulation

(a) Centauro live visu of Images (b) Centauro live visu of PointCloud

(c) Centauro live visu of Images

(d) Centauro live visu of PointCloud

Figure 10: Visualization of real data of the CENTAURO robot.

5 VISUALIZATION AND RENDERING 18



CENTAURO – 644839 D4.2 Simulation

5.1 Operator Visualizations
Intuitive visualization of data is often the key element to an enhanced user experience. Thus,
we extended frameworks to generate overlays and billboards.

Overlays: As one can see in Fig. 13a one can generate a user- or application-oriented Head-
up Display (HUD) to visualize internal or external data, like battery, parameters, images, maps,
plots, compass, etc. This user interface can then be used in the final mission in an individual
setup based on the operator and the chosen I/O devices.

Billboards: Additionally, environment or object information can be projected into the 3D
scene to visualize additional information. We implemented (a) traversability cost map visu-
alization, and (b) path visualization. The cost map can be seen in Fig. 11 and represents a
three-dimensional overlay of a dynamically generated heightmap, which will be presented later
in Sec. 6.2, with a color map of traversability costs. This overlay should enable the operator to
directly see drivable and critical areas more intuitively.

6

?

Figure 11: Rigid body 3D environment, generated via a ROS height map with a color overlay
of a traversability cost map.

Furthermore, we also implemented the (online) visualization of planned paths. This path
visualization can be seen in Fig. 12c. Transmitted via ROS msgs (centauro msgs/HeightMap
and nav msgs/Path) the data is preprocessed by project partners, and finally rendered in the
simulator.

(a) Heightmap

(b) Costmap (c) Path

Figure 12: Visualization metaphors.

Besides the aforementioned visualization one can also use billboards for detected objects,

5 VISUALIZATION AND RENDERING 19



CENTAURO – 644839 D4.2 Simulation

rendered at the site of occurrence (see Fig- 13b).

(a) Head-up Display (HUD) (b) Projective VR ”Billboards”

Figure 13: Simulation-based operator interface and visualizations.

These billboards represent a pose P (p,O) and an information string s. They are automati-
cally oriented to the camera viewpoint, and also fade-in and out by a predefined distance. The
used ROS msg type is here the customized centauro msgs/ModelPose. Due to the ROS interface
we can already connect any ROS transmitted data (and of course data from internal simulator
frameworks) to generate such visualization metaphors.

5 VISUALIZATION AND RENDERING 20



CENTAURO – 644839 D4.2 Simulation

5.2 Textured Mesh Rendering
Based on developments of UBO, who achieved a textured mesh renderer as a standalone tool
for the review meeting, we have decided on the following integration concept:

1. RWTH integrates the code of UBO used at the review meeting for rendering Kinect v2
data directly into VEROSIM,

2. LIU developers a textured mesh polyhedron renderer node,

3. RWTH interfaces the LIU node, utilizing previous integration of UBO’s code.

All in all, we want to achieve a ROS network, where the sensor head publishes ROS messages
(Velodyne PointCloud + Kinect PointCloud + Kinect RGB image + 3 RGB Camera images),
one ROS node (by LIU) processes this data prior to rendering in the simulator.

Additionally, RWTH has to provide the possibilities to render this textured mesh on normal
monitors as well as stereoscopic VR glasses (like the HTC Vive).

5.2.1 Kinect Renderer

The integration of UBO’s textured mesh renderer into VEROSIM is currently under heavy de-
velopment. The general conceptual idea is to directly incorporate the given code into the simula-
tor directly. This code involves only data from the Microsoft Kinect v2, generating a pointcloud
based mesh with projected image textures onto it. Based on these developments we will extend
the concept to the unit sphere rendering in the following. As one can see in Fig. 14 we already
achieved a preliminary integration of UBO’s code for rendering Kinect v2 data.

Figure 14: Visualization of a textured mesh.

5.2.2 Generalized Renderer

The generalized renderer represents a unit sphere rendering approach of LIU. This will be a
standalone ROS node that handles (and fuses) the pre-processing of sensor data from the Velo-
dyne, Kinect, and the three RGB cameras. The consortium decided on the following customized
ROS msgs types:

5 VISUALIZATION AND RENDERING 21



CENTAURO – 644839 D4.2 Simulation

• centauro msgs/Polygons

• centauro msgs/SubMeshTexCoords

• centauro msgs/SubMeshVerts

• centauro msgs/TexturedPolygonMesh

• centauro msgs/TextureMesherInput

where the input of the system is represented by the TextureMesherInput data type and consists
of the pointcloud, image, and camera info data. The output of the system (and thus the input
to the simulator) is represented by the TexturedPolygonMesh which especially comprises the
pointcloud, vertices, texture coordinates (u,v) and images. These can then directly be rendered
in the simulator (or any other renderer used).

5.2.3 Stereoscopic Rendering in General

The integration of stereoscopic headsets, like the HTC Vive, requires a holistic integration in
the simulator. Thus, OpenVR and SteamVR are used to interface with the given SDKs and could
directly be used in VEROSIM. For Windows this integration is completely finished and showed
very good and performant results. The Linux SDKs are unfortunately not supported completely
yet but we are currently working on implementation details. First results can be seen in Fig. 15
where we use the HTC Vive under Linux to render the current robot model state.

Figure 15: Stereoscopic rendering using HTC Vive.

If there will be still challenges during the integration phase we already set up a backup
concept of using a Linux and Windows VEROSIM in parallel, where we utilize Core and ROS
functionalities under Linux, and the rendering under Windows. The current set of all properties
can then be synced in between these systems.

5 VISUALIZATION AND RENDERING 22



CENTAURO – 644839 D4.2 Simulation

6 Simulatable Environment Model
The environment model is one main aspect of the CENTAURO system. On the one hand,
we want to use the simulation prior to the final evaluation to conduct the defined benchmark
tasks (of M30 and M42 evaluation). On the other hand, we want to use a dynamic perceived
environment (build by sensor data of the real robot) which can be switched into, to test and
evaluate planned actions. Thus, we will present those ”static” and ”dynamic” environments we
have instantiated so far in the following.

6.1 Static Environment
In general, static environments are not meant to be static, but to be in a predefined state. Only
on the broader scope, these environments are not dynamically created during runtime, but are
predefined. Thus, we have an environment that does not change over time, but nevertheless
some parts of it can be moved, modified, etc. We implemented a set of environments that are
associated with WP8 Integration. We used the M30 and M42 benchmark (real) environments
and tasks to recreate these in the simulator. With this we can use the simulator for an earlier
testing and benchmarking in the real environment.

To have a holistic database for all these parts we developed a Model Library. There we can
encapsulate all robots, environments, items, and tasks. Additionally, we can generate evaluation
or benchmark scenarios by point and click. In the following, we first present the Model Library
itself (cf. Sec. 6.1.1) before presenting M30 (Sec. 6.1.2) and M42 (Sec. 6.1.3) evaluation.

6.1.1 Model Library

The Model Library is a project specific conglomeration of models. In CENTAURO we defined

Figure 16: ModBib Concept: Environments, Robots, Sensors, Items/Tasks.

the four model types:

• robots,

• environments,

6 SIMULATABLE ENVIRONMENT MODEL 23



CENTAURO – 644839 D4.2 Simulation

• items and tasks, and

• sensors.

Of course the different robot models presented in Sec. 4.1 are gathered here, as well as the
different sensor types of the final sensor head, like:

• Velodyne (point cloud),

• Kinect v2 (point cloud + RGB image),

• wide angle RGB camera.

Additionally, we group the setup in (a) environments and (b) items/tasks. Thus, we can generate
a holistic setup by first choosing an overall environment and afterwards filling it with items.
Additionally, we can save this composition using relative model paths in one integrated model
file.

Besides the aforementioned robots and environments we also have some ”normal” objects
developed for further tasks. Tab. 1 presents some of these models. Specific models w.r.t the
integration protocol can be found in the appendix in Tab. 2, Tab. 3, Tab. 4, and Tab. 5.

Table 1: ModBib: Collection of sample objects for navigation tasks (a,b,c) or standard manip-
ulation tasks (d-i) up to very filigree manipulation tasks with a marble run (j,k,l).

Nr. VEROSIM Render Image

a,b,c

d,e,f

g,h,i

j,k,l

6 SIMULATABLE ENVIRONMENT MODEL 24



CENTAURO – 644839 D4.2 Simulation

6.1.2 KHG M30 Evaluation

The evaluation of a first integrated CENTAURO system will take place in M30 at the KHG
test facility. Based on images and CAD drawings we re-modeled all necessary evaluation tasks
defined in D8.1, which are also presented in the appendix in Tab. 2. One rough example is
shown in Fig. 17 where we remodeled the steps and platform present at KHG.

(a) Image (b) VEROSIM

Figure 17: KHG environment example: platform and steps.

Besides the ability to use all of these developments during the M30 evaluation meeting, we
can also use it prior to this for testing.

6.1.3 USAR M42 Evaluation

The final CENTAURO system evaluation is expected to be at the USAR test facility in Ahrweiler.
As presented in previous reports this facility comprises a so-called ”disaster road” including
damaged buildings. We have gathered point cloud data of the facility with a Zoller+Fröhlich
ZF IMAGER 5006 high resolution laser scanner, with a resolution (set to high) of H = 0, 036◦

and V = 0.036◦, f = 10.000pxl/360◦, an ideal object distance of l > 5m and a beam diver-
gence of d = 0, 22mrad.

Some 360◦ intensity images of this scan accompanied by some real images can be seen in
Fig. 18.

The according point clouds currently still needs pre-processing and filtering before we can
reconstruct a holistic environment model of the disaster road. A first impression can be seen in
Fig. 19 where a VEROSIM pointcloud image can be seen. The conversion of point cloud data
into a rigid body based simulation environment is currently under development.

6 SIMULATABLE ENVIRONMENT MODEL 25



CENTAURO – 644839 D4.2 Simulation

(a)

(b)

(c)

(d)

(e)

(f)

Figure 18: M42 evaluation camp: USAR Ahrweiler ”disaster road” 360◦ intensity images, out-
door (a-c) and indoor (d-f).

(a) Image (b) VEROSIM

Figure 19: USAR disaster road: sample point cloud in VEROSIM.

6 SIMULATABLE ENVIRONMENT MODEL 26



CENTAURO – 644839 D4.2 Simulation

6.2 Dynamic Environment
The dynamic environment comprises the two different aspects of

1. ground, and

2. items.

The generation of this environment is of course limited to the sensors used.

6.2.1 Heightmap

We use preprocessed sensor data by UBO which provide the simulator a so-called HeightMap.
This map is generated by a ROS node of UBO and transmitted via a custom ROS message type
namely centauro msgs/HeightMap. Afterwards, this heightmap is imported as a VEROSIM
geometry and dynamized into a HeightField rigid body.

(a) Raw PointCloud data (b) HeightMap Rigid Body

Figure 20: Heightmap.

6.2.2 Template-based Model Insertion

The model library items should also be used for ”template based model insertion” based on the
object perception tasks. Besides the pure visualization of objects in the scene based on Sec. 5.1
we want to insert an according model at the place of recognition. For example, a hammer
recognized on a workbench will be replaces in simulation by a dynamic rigid body model of
an according hammer from the model library. Thus, we can grasp the hammer in simulation
instead of just visualizing its point cloud. The transmission of information is still done via the
ROS msg centauro msgs/ModelPose.

6.2.3 Real-Time Linux

Some complex dynamic simulation models need to be executed in a real-time simulation en-
vironment to guarantee a hard upper limit to scheduling cycle times. Especially applications,
which comprise physical hardware components besides the simulated environment, impose such
requirements.

Figure 21 depicts a setup with different computing nodes working in close coordination
to implement a simulation system coping with the inclusion of a set of slave nodes taking
the roles of real-time controllers to an actuator (KUKA LWR iiwa), a sensor (Velodyne 3D
laser scanner) and a simulated model, that might also be replaced by a physical counterpart.

6 SIMULATABLE ENVIRONMENT MODEL 27



CENTAURO – 644839 D4.2 Simulation

Slave Node #1

Slave Node #2

Slave Node #3

Master Node

Figure 21: Sample configuration of Master and Slave nodes implementing a complex simulation
environment with physical actuators and sensors.

Since the master node is not necessarily a real-time system, especially due to the fact that
it is meant to act as an user interface to the simulated environment and therefore contradicts
timing requirements, such a separation is essential to guarantee stable operation of the hardware
components. As a consequence the master node fuses the simulation results from each slave
node into the central simulation model. In the example above, the simulation environment on
the master node includes a simulated robot that mirrors the behaviour of the physically attached
robot. The dedicated slave node executes a simplified simulation model to calculate trajectories
requested by the master including either kinematic or dynamic behaviour. Likewise, a simulated
laser scanner is included that represents the acquired 3D pointcloud from the physically attached
laser scanner. The sensor simulation on its dedicated slave preprocesses the measurements and
generates the pointcloud data to be accessed by the master.

Slave Node #1

Slave Node #2

Slave Node #3

Stateful Autoconfiguration

SSD-Raid

Ubuntu 14.04
Master

System-Services

DHCP

NFS

TFTP

RDP

Toolchains

VEROSIM-SDK

Matlab/Simulink

QNX GCC

Linux GCC

Figure 22: Structure of the automated setup for stateful autoconfiguration of slaves.

The automated setup and stateful configuration was implemented as shown in Figure 22.
The master node provides a set of services and tool chains on a fast storage system that is also
accessible by each of the slave nodes via network file system (NFS) and trivial file transfer
protocol (TFTP). That way the Master Node distributes the operating systems and all the data
for the simulation models to the slaves. During the boot process of each slave, it acquires a
dynamic IP address from the master and fetches an operating system image using TFTP, e.g.
QNX or a Linux Kernel with real-time capabilities. As soon as the Kernel is running the user
land is mounted via NFS, at which point the simulation software and models are also available
to be executed. The master needs to determine, depending on the simulation to be run, what

6 SIMULATABLE ENVIRONMENT MODEL 28



CENTAURO – 644839 D4.2 Simulation

role each slave node has to take up and to afterwards start the slave processes.

6 SIMULATABLE ENVIRONMENT MODEL 29



CENTAURO – 644839 D4.2 Simulation

7 Overall Setup
The overall setup (cf. Fig. 1) comprises the four possible scenarios:

1. Direct control of the real robot.

2. Direct control of the digital twin.

3. Visu Mode: Direct Control of the real robot visualizing the robot state in simulation in
parallel.

4. Prediction Mode: Directly control and pause the real robot, switching into virtual reality
to evaluate planned action there first, before executing them in reality.

Especially the prediction mode is part of this deliverable and the final evaluation scenario is
based on it. Thus, we will focus on this mode in the following.

7.1 Interfaces and Integration
Based on the interfaces and integration partners defined in Sec. 3, the integration concept is

shown in Fig. 23.

XBotCore

ROS

Robot Base

Sensor Head

Hand L
Softhand

Hand R
Schunk Hand

EXO

NAV

MAN

TC & 
O/WP

Figure 23: Interface Concept based on Fig. 2, using XBotCore (blue) and ROS (green).

As we can see, most interfaces are based on ROS, where most of the used message types
can be found in Sec. 3.1. Everything that is directly integrated into XBotCore should now be
ready to work also in the simulator system. The digital twin has to replicate this scheme to be
used exactly like the real robotic system.

7 OVERALL SETUP 30



CENTAURO – 644839 D4.2 Simulation

7.2 Switch into Prediction Mode
The ”Switch” of directly control the real robot to directly control its digital twin requires dif-
ferent steps (see also Fig. 1). These steps were conducted in cooperation with UBO as a first
conceptual draft how this could be accomplished:

1. Pause the real system (in a safe state)

(a) Stop the real system listening to commands

(b) Stop the real system publishing joint states/ sensor data

2. Switch the simulation from visualization mode to a dynamic rigid body simulation

3. Stop the digital twin listening to joint states

4. Construct a virtual world (rigid body simulation)

5. Use the rigid body model of the digital twin

6. Start the digital twin

(a) Start the digital twin listening to commands

(b) Start the digital twin publishing joint states/ sensor data

These steps result in the Prediction Mode where we use the digital twin identically to the
real system, using the same input devices, the same commands, resulting in the same kind of
feedback from the system.

To physically execute this ”Switch” we need to take all interfaces into account. Simply said,
we just have to redirect all messages from and to the robot to the simulator. In Fig. 24 this
scenario is described in more detail. Besides the general ROS commands which can be redi-
rected cutting the connection of ”NimbRo Interface Software” (by UBO), additional switches
are required for the exoskeleton (by SSSA) and the simulation itself. For the exoskeleton SSSA
would have to redirect the UDP packets to the operator station instead of the mobile robot. For
the simulator we exchange the robot model and use the modular I/O board where we can easily
toggle an enabled/disabled flag for all relevant components.

7 OVERALL SETUP 31



CENTAURO – 644839 D4.2 Simulation

NodesNodes

VEROSIM

• VS: VEROSIM
• S: Switch

Operator Station

roscore roscore

N
im

b
ro

N
et

w
ro

k
So

ft
w

ar
e

EXO

S

S

S

Nodes

Figure 24: ”Switch” (S) in between Visu Mode and Prediction Mode w.r.t. Fig. 1.

8 Conclusions
Taking everything into consideration, we now can present a holistic system of robot and environ-
ment model accompanied by a set of input devices, integration of core middleware (XBotCore
and ROS), and useful visualizations.

This encompasses different robot models (digital twin vs. visualization model) and dif-
ferent simulator modes (direct control vs visualization mode). Furthermore, the integration of
ROS, UDP, and XBotCore as message passing middleware, as well as the implementation of all
necessary simulator internal connections (of joints, sensors, etc.) to and from ROS were estab-
lished. Additionally, in terms of rendering different aspects were covered: i) the (stereoscopic)
rendering in general, the rendering of raw and processed sensor data, up to specialized types
like textured meshes; ii) new user interfaces, like head-up-displays and projected visualization
metaphors were integrated to promote the ease of use visualizing data in the operators view or
at the place of occurrence. Furthermore, benchmark scenarios and objects (real or fictional)
were modeled, based on the specification requirements for M30 and M42. Finally, the online
conversion of sensor data to rigid body environment models has been implemented to generate
simulated worlds based on the robot’s percepts.

The next step is to evaluate on-line performance of this holistic system, whereas we already
conducted concepts of integration and ’switching’, as well as anticipatory actions for the critical
components of stereoscopic rendering on Linux and the swap of rigid body simulation to a real-
time capable QNX server.

9 Appendix
In the following the model library for the M30 and M42 evaluation scenarios is presented.

9 APPENDIX 32



CENTAURO – 644839 D4.2 Simulation

Table 2: ModBib: Locomotion.

Nr. Name of task Real image VEROSIM MS

1 Narrow Passages

1a
Opening and going through a
regular door (Door equipped
with a handle, unlocked)

M30

1b Add closing mechanism and use
of a key to unlock

M42

2 Obstacles

2a RoboCup Resue 3D step field M30

2b Add debris M42

2x KHG obstacles M30

2x KHG obstacles M30

3 Stairs

3a
Walking up and down on a regu-
lar stairs with min. 45◦ (straight,
change direction at landing)

M30

3b Debris on the stairs M42

4 Ramp

4a Walking up and down on a ramp
of min 30◦

M30

4b Walking up and down on a ramp
of min 45◦

M42

5 Gap

5a Overcoming a gap of min. 30cm X X M30

5b Overcoming a gap of min. 60cm X X M42

9 APPENDIX 33



CENTAURO – 644839 D4.2 Simulation

Table 3: ModBib: Manipulation 01.

Nr. Name of task Real image(s) VEROSIM MS

1 Valve

1a Opening and closing a valve

1b
Different locations, different
diameters

2 Pipe Star

2a Inspection

2b Direction

2c Extraction

2d Insertion

References
[1] European Commission Directorate General for Communications Networks, Content

and Technology Components and Systems: Robotics. Grant Agreement 644839:
CENTAURO—Robust Mobility and Dexterous Manipulation in Disaster Response by Full-
body Telepresence in a Centaur-like Robot, 2014.

REFERENCES 34



CENTAURO – 644839 D4.2 Simulation

Table 4: ModBib: Manipulation 02.

Nr. Name of task Real image(s) VEROSIM MS

3 Fire Hose Connection

3a
Connect mobile hose to a sta-
tionary part

M30

3b
Connect two hoses (both mo-
bile)

M42

4 Power Connection

4a
Connect mobile hose to sta-
tionary part 220V

M30

4b
Connect two hoses (both mo-
bile) 220V, 440V

M42

REFERENCES 35



CENTAURO – 644839 D4.2 Simulation

Table 5: ModBib: Manipulation 03.

Nr. Name of task Real image(s) VEROSIM MS

5 Take a Sample

5a Follow a surface with a sensor X X M30

5b Smear test X X M42

6 Fix a Cable

6a Snap hook M30

6b Shackle M42

7 Use Power Screw Driver

7a
Screw is already partially in
wood, use power screw driver

M30

7b
Attach a piece of wood to
some static wood. Use power
screw driver

M42

8 Drill a Hole

8a Use a single handed driller M30

8b
Use a two-handed larger ver-
sion

M42

9 Cut a Cable/Pipe

9a Use a cutting tool M30

9b Secure part that is being cut M30

REFERENCES 36


	Introduction
	Overview
	Interfaces
	Simulatable Robot Model
	Visualization and Rendering
	Simulatable Environment Model
	Overall Setup
	Conclusions
	Appendix

